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Abstract. g-phase transition points in the context of the thermodynamical formalism of
dynamical systems arise via the degeneracy of eigenvalues of the corresponding transfer
operator. The scaling behaviour near bifurcation points of dynamical systems is investi-
gated by a mean-field-like expansion for the characteristic equation of this operator. Scal-
ing relations in the vicinity of g-phase-transition points, which are brought about by a dou-
bly (respectively triply) degenerated eigenvalue, are explicitly derived. For the character-
istic function (topological pressure) this relation reads $(q) =~ In vy + 6*@((g—ga) /5%)

where the exnonent o = 1.1 1 of the bifurcation mrameter § denends on seneral
WacIe Uit Lponent 4 = I, 5, 7 OO MG DUUICAUON pafaincier ¢ geponds on goenordl

properiies of the phase-transition point. The approach explains the universal features of
the scaling behaviour.

1. Introduction

The thermodynamical formalism originally introduced in the context of the ergodic
theory of dynamical systems and the mathematical formulation of equilibrium statis-
tical mechanics {1, 2] has been applied recently to problems in nonlinear dynamics,
chaotic systems and turbulence [3-5). The aim of this approach consists in the in-
vestigation of temporal coarse grained, that means finite-time averaged, quantities
and their fluctuations due to the irregular motion in the system under consideration.
Usually one considers the fluctuations of the local expansion rate, which is due to
Bowen’s theorem {2}, of special importance; but also different quantities have been
treated in this context [5]. it has been shown that the large fluctuations contain the
essential information about the dynamics and the structure of the strange invariant set
[6]- These large fluctuations can be described appropriately by a characteristic func-
tion ¢(q), referred to as topological pressure in the mathematical literature, which
corresponds to the free energy of statistical mechanics in the previously mentioned
thermodynamical formulation. Non-analyticities in this function, called g-phase tran-
sitions, indicate a singular local structure of the chaotic attractor [7]. For this reason
these transitions can be observed at bifurcation points of dynamical systems, especially
at crisis points, and a typical scaling behaviour in the quantities of interest emerges
in their vicinity [8-10]. In a preceding publication we have pointed to an explanation
special system under consideration [I1]. It is the aim of this article to extend this
idea to more complicated bifurcations.
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3568 W Just and H Fujisaka

To be definite and to state the notation let us consider a discrete dynamical sys-
tem z,,, = T(z,) although our approach is applicable to more general situations
as will become clear in the sequel. As a slight generalization of the usual thermody-
namical formalism we want to investigate the fluctuations of several scalar quantities
u,(z),...,up(z) [12]. Following the lines of the one observable case the essential
information concerning the nonlinear system is contained in the generating function

ne1
<exp (qz u(T‘(:L)))> = (UE'O))" {Jéo) + Z J;r) (uy)/véo))“} . 4]

i=0 >0

Here q = (qy,.--,qp) and w = (uq,...,u,) denote a shorthand vector notation,
T* means the i-times iterated map T and the ensemble average {...) is meant with
respect to a distribution of initial points which is usually assumed to be the natural
one (SRB measure). The expansion on the right-hand side of (1) can be understood

easily by using a transfer operator whose explicit expression reads in this context as
[13]

(rgh(e) = [ 8o = TSP h(y)dy. @

The main behaviour of the expansion (1) is determined by the eigenvalues ug” of
this operatort where for simplicity in the notation we want to assume a discrete
spectrum ordered according to the relation uf,o) b |uf,0| P lu.(,k)|, 0 < | € k although
a continuous part can be incorporated directly in our approach. The quantities of
interest, the characteristic function (topological pressure)

n—1
a(g) = J}.].I;o % In <exp (q Z u(Ti(;r;)))> = In V.(;D) 3)

i=0

which determines the stationary fluctuations of w(x) as soon as the damping rates
’y.(,r) and the corresponding frequencies w,(,” governing the temporal correlations [14]

1 r U(f)
P 41wl i= ~In ﬁ 4
q

can be related to the eigenvalues of the operator (2). A phase transition that means
a non-analyticity in the quantities (3) and (4) is brought about by a degeneracy of
eigenvalues. This situation can occur at bifurcation points of dynamical systems [9,
15]. In a preceding publication [11] we have shown that, for the case of a doubly
degenerated eigenvalue, the scaling behaviour in the vicinity of a bifurcation point
can be obtained in a general way from the characteristic equation of the operator (2)

P(vg,6,q) =0, )

Here 6§ > 0 denotes a bifurcation parameter leading to a bifurcation that means
leading to a degeneracy of eigenvalues in the limit § | 0. It is the objective of this

| . .
t J,(,) denote some expansion coefficients.
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publication to extend this approach beyond the case of a doubly degenerated eigen-
value as well as to incorporate the multivariable case ¢ = (g, ..., gas). It should be
pointed out that our approach yields a theoretical explanation for the occurrence of
the scaling behaviour and the general form of the scaling functions which is indepen-
dent of the model under consideration. In section 2 we review the previously treated
situation for the broader multivariable case. Section 3 contains the discussion of the
more involved case of a triply degenerated eigenvalue. Some iflustrative examples are
investigated in section 4. Finally our results will be summarized.

2. Doubly degenerated eigenvalue

The main idea in deriving the scaling relation from (5} is based on a few reasonable
presuppositions and needs no explicit reference to a special dynamical system. For
the situation treated in this section these presuppositions read as follows.

(P41) Equation (5) should yield two largest eigenvalues which are well separated
from the remaining part of the spectrum. The largest eigenvalue should be real. In
the Limit & | O they should become degencrated vy )(61 0) = ué”(& | 0) for certain
g values leading to a phase transition.

(P42) Equation (5) should be analytic in é and q.

(P43) The system should admit an attracting set so that g = 0, v, = 1 is the
largest solution of (5) for all values of & {16]. That means

Plvy=1,6,q=0)=0. (6)

Before we proceed a few remarks on the meaning of these presuppositions seem
to be suitable. The first presupposition restricts the bifurcation of the dynamical
system to a certain class which contains, for example, the symmetry breaking chaos
transition [15]. Especially when chaotic sets are involved in the bifurcation it has
turned out that often only a finite number of eigenvalues govern the phase transition.
The second presupposition puts some constraints on the choice of the bifurcation
parameter. Our parameter & is in general a function of the bifurcation parameters of
the original system whose explicit relation to the latier is not needed for the present
purpose. Although our approach cannot yield this relation a priori it can be easily
determined a posteriori if the scaling behaviour is, for example, computed numerically.
Contrary to these the third presupposition is not essential and can be omitted if one
wants to treat repelling invariant sets.

Let us begin the derivation of the scaling relations by inspecting the situation at
the bifurcation point & | 0. In general the eigenvalues uq')(é | 0) mn be viewed as
hyperspheres in the g-v,-space where due to (P;1) the hyperspheres vq )(6 } 0) and

ugl)(éj 0} cross along the set (cf figure 1)
I, = {qlv{(8 1 0) = v{V(6 | 0)}. )

This codimension 1 manifold in the g-space yields the phase-transition line. Figure 1
displays the geometrical settings described earlier. Let us now consider how this
situation changes if a non-vanishing bifurcation parameter is introduced. For this
reason let g, € I, denote a fixed but arbitrary chosen point on the phase-transition
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Figure 1. Diagrammatic view of the eigenvalues govemning a phase transition based on

a double degeneracy (6 | 0). u‘(?n). y,(,l} denote the two largest cigenvalues and T.
the phase-transition line in the two-dimensional g-space (M = 2). The fixed chosen
phase-transition point (v., q.) and a vector m» normal to the phase-transition line are
also indicated.

line and v, := uf,'f)(é | 0) the corresponding eigenvalue. Owing to (P,1) a second-

order polynomial can be extracted from the characteristic equation so that (5) reads

vV 2 1 -
0= P(v,,6,a) = {(f 1) 41600 (2 1) b o690 | Pl i) ®
where P denotes the non-vanishing part in the vicinity of the phase-transition point
vg =1, 6 |0, g =gq, The first factor is written in the variable vefv, — 1 for
simplicity. For g€ I',, 6 | 0 equation (8) yields, due to (P,1), a doubly degenerated
solution so that

9(810,3)=47%610,9) gel.. )

Especially for ¢ = g
relations

this eigenvalue is given by v, which results in the stronger

*

f(810,9.)=0 g(610,q,)=0. (10)

After these general considerations (P,2) guarantees the existence of a Taylor expan-
sion of the functions f and g. Taking (10) into account it reads

&)= 7%+ " Aq: +0,

et o (11)
g(6,q) =g + g% : Aq: +¢°"6* +g' 1 Aq: 6+ 9" : Aq: Aq: +0y
where the abbreviating notation
B:w:xw:.. .t2w:= Z B wTut,...x, (12)
[

. W >
n-lmes n—times
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and
Ag:=q—gq, (13)

has been introduced and O, denotes the contribution of nth and higher order. The
coefficients in the expansion (11) are now restricted by our presuppositions as can be
seen in the following way:

(i) 6 | 0. Then, taking the expansion (11) into account, (8) yields

0= (% 1)2 +9%:a0:+0 (1agf ladl (2-1)). a9

L *

By (P,1) this equation admits a real solution. But as Ag has no definite sign the
relation

gl =0 (15)

follows.
(ii) ¢ = q,. Now (8) and (11) lead to

0

]

{V‘?' _1\2+
\ /

UM
The same reasoning as above yields
9" <o (17)

where the difference from (15) comes from the fact that & can take orly non-negative
values.

(iii) g, = 0. This case can cccur if the phase-transition manifold (7) crosses the
origin of the g-space. Then by (P43) v, = 1 holds and by making reference to (6),
(8) yields,

g(é,q=10)=0 (q. =0). (18)
Inspecting the expansion (11) one obtains
g°=0  ¢g"=0  (q.=0) (19)

Therefore the relation g, = 0 implies g'° = 0. The reverse is, in general, not
valid but holds in the peneric case as g, # 0, ¢'® = 0 would require an additional
constraint which can be removed by a small perturbation. For this reason we will
concentrate on the cases g, = 0, ¢'® = 0 respectively g, # 0, ¢'9 < 0 and omit the
previously mentioned non-generic situation.

(ivyg=ger,, 6| 0: Then (9) and expansion (11) yield

G- i -2 (" d—a ) +00d-al) =0 Q0

g%:z:z: -1 (fm:;-::)2=0 if z is tangent to [, (21)

Due to this relation the expansion coeflicients are related to the shape of the phase-
transition line.
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With these seitings the two different cases ¢, = 0 and ¢, # 0 can be analysed
easily.

Case A. q, = 0. By making reference to (15) and (19) expansion (11) reads
J(8.q) = £1°6+ % 1 q: +0,
g(6.9) =g 1q:6+g":19q:q:4+0;. 22)
Using the scaling abbreviations
v, ~1=:8y, g=:6s (23)

where 1, and s are of the order (O(1) in the limit of small é the characteristic
equation (8) reads

O=oi4+(f+f s ), +g'ra:+9%:5:5:40(8) (29

and leads 10 the following asymptotic behaviour in the region 0 < é < 1%

Pl 1104 M syt \/;li(fm-i-fm:.9:)2—9“:3:—902:3:3:. (25

This expression can be considerably simplified if one splits s in a tangent and normal
part according to s'= 87 4+ (sn)n. Here n denotes a vector normal to the phase-
transition manifold at g, (cf figure 1). Inserting this in the radicant of (25) and using
the relation (21) the second-order contribution in sT vanishes, Then the radicant
has the general form A : sT : + B where the coefficients A and B depend on the
normal part (sn). If the coefficient A does not vanish identically this expression
takes negative values by choosing sT appropriately. As a consequence v, becomes a
complex quantity in contradiction to (P, 1). Hence A vanishes identically which means
that only the normal part (sn)n contributes to the square root. Finally rewriting (25)
for the original quantities (23) one oObtains the scaling relation

v — 1~ 6H g/ 6)

HED (@) 1= =3(7° + %) £ /310 4 f9(@n)? - 9"\ (2n) - g%(zn)? (26)

where %1 := f%':n:, g'' i= g : n: and ¢°% := g% : m :n i Both terms of the
scaling function can be easily interpreted. The first contribution arises through the
g dependence of the eigenvalues which is also present in the ‘unperturbed’ (8 { 0)
system. The square root yields a g-dependent scaling normal to the phase-transition
manifold. If one varies g along this manifold this term yields only a constant difference
between the eigenvaltues resulting from the finite value of the bifurcation parameter.

Case B. q, # 0. Then by (15) and the remark following (19} the expansion (11)
reads

f(8,q)=f" :Aq:+0(6,|Aqf)
9(6,q) = ¢'°6 + g°%: Aq: Aq: +0(6%,6]Aq|,|AqP). (27

t The 4 sign corresponds to 1}1&0) as ugm p-1 ui”.
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Introducing the different scaling abbreviations

? — 1 = \/31‘[;‘ Aq =:Vés (28)

™

due to the fact that g contains a first-order contribution the characteristic equation
(8) reads

0:1,!')3-{—)‘01:.s:l,i),+gm+goz:.s:3:+0(\/3) 29

and possesses the asymptotic solution

14’)&011] ~ —%fm 13 :!:\/lr(fm 1812 -gh2:g: 81 —gll, (30)

The same reasoning as presented in case A yields the scaling relation

Ya _ 1~ \/EHS]II) (ﬂ)

vy 3
HLD/])(Q\ = —Llg0l i e a2 /{lf F01Y2 002\ {xn )2 — 510 (31)
B N 7 2-’ * "‘V AN B 7 < Fu F = AN A
where fO1 ;= f% ' n:, ¢% := g% : n : n : and n denotes a vector normal

to the phase-transition manifold at g,. Concerning the discussion of the different
contributions of the scaling function we refer to case A

Table 1 Scaling relations in the case of a doubly degenerated eigenvalue and definition
of the scaling functions (X == A, B). For the explicit expressions we refer 1o (262) and
(312).

g. =0 g. £ 0

o(a)  84a(a/6) Inv.+V5dg (2q/VE)
v S3a(a/6) Vs (Aq/VF)
LYoo 0

H O ()
HO(z) - H (=)

bx(x):
Fx (=) :

H

It goes without saying that the scaling relations for the characteristic function ¢
and the damping rates can be immediately obtained from (3), (4), (26) and (31).
Table 1 summarizes the main results of this section.

3. Triply degenerated eigenvalue

Let us now concentrate on the main part of this article, the case of a bifurcation
leading to a triply degenerated eigenvalue of the transfer operator. Before we are
going into the details some general remarks seem to be necessary. It is reasonable to
assume that simple bifurcations of chaotic sets governed by one bifurcation parameter
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lcad to a doubly degenerated eigenvalue of the transfer operator. This situation is
similar to local codimension one bifurcations in the theory of ordinary differential
equations where only one or a pair of complex cornjugated eigenvalues crosses the
imaginary axis. To produce generically higher-order codimension bifircations several
parameters have to be introduced into the unfolding [17]. This indicates that in the
case considered here several parameters must also be introduced, whereas we have
two possibilities. On the one hand one can consider the situation of more than one
bifurcation parameter. On the other hand one can enlarge the set of fluctuating
variables u(x}. We follow in this article the second idea which yields in a loose
thermodynamical analogy a more than one-dimensional phase space {(g-space). It
has been demonstrated by analysing several examples that in this case a higher-order
phase-transition emerges [12, 18]. We want to investigate the scaling behaviour near
these phase-transition points from our general point of view.

Let us now state the presuppositions necessary to derive the scaling behaviour
from (5):

(P.1) Equation (5} should admit three largest eigenvalues which are well separated
from the remaining part of the spectrum. The largest eigenvalue should be positive.
In the limit § | 0 the eigenvalues should become degenerated ug‘”(a 10y = uf,l)(ﬁ l

0) = u.(f)(é | 0) for certain q values leading to a phase transition.

(P.2) Identical to (P,2).

(P.3) Identical to (P43).

{(P,4) In the limit & | O the three eigenvalues should be real and analytic in a
neighbourhood of the phase-transition point.

Concerning (P, 1)~(P,3) we refer the reader to the remarks made in section 2. By
(P.4) we restrict the discussion to phase-transition points where three phase-transition
lines meet (cf figure 2). This situation is mostly shared by concrete examples. We are
not sure whether the opposite case, that means one real and two complex conjugated
eigenvalues in a neighbourhood of the phase-transition point (& | 0), can occur in
dynamical systems. We refer the reader 1o appendix A where the details of this case
are briefly outlined.

Again we start our discussion by analysing the situation at the bifurcation point
6 | 0. As the eigenvaiues are real in the vicinity of the phase-transition point due
to (P,4) they can be viewed as hyperspheres in the g-—v -space which cross along the
manifolds (cf figure 2)

T, = {6 10) = {81 0) =P8 0)}
Pay=Aale?(E1oy=v§610)  (i/3) =(0/1).(1/2),(0/2).  (32)

f‘(,- ;;) Tepresents the codimension one phase-transition manifold on which two eigen-
values become degenerated. They meet in the codimension two manifold I", of triply
degenerated eigenvalues. As the result of this situation the g-space is divided into
three parts {phases} corresponding to the different largest eigenvalue. The scaling re-
lation connected with the manifolds I, ,;, was treated in section 2. Let us therefore
concentrate on I, and choose ¢, € I', arbitrary but fixed. v := v, (8 ] 0) denotes
the critical eigenvalue. Then by (P, 1) a polynomial of third-order can be extracted
from the characteristic cquation so that (5) simplifies to

0= (%‘- - 1)3 + a(6.q) (ﬁ - 1)2 + (8, 4q) (? - 1) + (6, q). (33)

» Ut
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(0]

¥q

Figure 2. Diagrammatic view of the eigenvalues governing a phase transition based on a
triple degeneracy (6 | 0). V‘[Io), uql), ,(;,2) denote the three largest eigenvalues, {1, qu)
the codimension two phase-transition point and I' the codimension one phase-transition

manifolds in the two-dimensional g-space (M = 2).

Instead of this representation the elimination of the second-order term by introducing

Yq
2= = 14 3a(é,q) (34)

"

turns out to be useful. Then (33) results in

&+ F(6,q)z + G(6,9) =0 33
where

F(8q) = b(8,q) - 3a°(4,9)

G(8.q) = ¢(6,q) — §b(&,q)a(8,q) + Fa®(6,q). (36)

Let us state a few general properties of the quantities (36). If one considers the
limit § | 0 and takes a g value on the codimension two phase-transition manifold
¢ € T, then (35) admits a triply degenerated solution which means

F(610,§)=0  G(6]10,§)=0  Gerl.. 37

If one chooses especially § = ¢, this degencrated cigenvalue coincides with v so
that by (33)

a(610,g.)=0  b(&§]0,q.)=0  oc(510,g,)=0.  (38)

Taking a ¢ value on the neighbouring codimension one manifolds § € l:‘(,-/“ the limit
& | 0 yields a doubly degenerated solution of (35) so that

D(510,9)=0 g€l (39)
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where, as an important quantity for the subsequent calculations, the discriminant of
(39)

D(6,q) := (1 F(8,9)) + (LG(5,0)) (40)

has been introduced. Finally we stress that the largest solution of (33) is positive
which means that (35) has either three real solutions or one real solution which is
larger than the reai part of the complex conjugate ones. This constraint results in

D({é,q) <0 three real solutions (41a)

or
D{s,q) =0 G(o,q) €0 one real solution (41b)

which can be seen, for example, by considering the explicit solutions of the cubic
equation (cf (63) and (64)).

Owing to (P,2) we are able to write down the following expansions of the coeffi-
cients F' and G

20 e

g)=FY%+F" cAq+F T+ FY i Aqi 6+ F tAg:Agq:+0,
G(6,q) =G+ G 1 Aq: +G 6+ G 1 Aq: 6+ G 1 Ag: Ag: +G¥5°
+ G Aq: 6+ G A Aq: 64+ G®Aq: Ag: Ag: 40,

o
e,

(42)
whara tha garmn nrdar cnnteithutinn vanichas daa #n Ty Dy cnanoidaring enaciol ~acas
Willklw LW Ll UUIWWL LI IUMLUVEL Yaillldiles Ul (A V) \‘f} Uy AS lBluCllllb BPL-DICI.I Ladhd
we put some constraints on the expansion coefficients.

(i) & | 0. Then (42) reads

F(610,q)=F"':Aq:4+F":Aq:Aq: +0(|AqP)
G(él0,q)= G Aq:+G” :Aq:Aq:+G": Aq: Aq:Aq:+0(jAq]Y).
(43)

By presupposition (P.4) (35) possesses three different solutions which can be ex-
panded as z; = z! : Aqg: +..., i = 1,2,3. Inserting this expansion together with
the expression (43) into (35) and requiring three different solutions for the expansion
coefficients z} one gets

FY =9, G =0 G% = 0. 44)

(il) g = q,. Now (42) reads
F(6,q.) = FI% + O(8%)
G{6.q.) = G+ G*6* + O(6%) (45)

and (40} yields

D(6,g.) = (3G*) 6* + { (3 F1°)" + §GG™} 6 +0(6%).  (46)
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The relation G'° > 0 contradicts (41) as in this case from (45) and (46) G > 0,
D > 0. Therefore

G <0 @7
holds.

(iiiy g, = 0. Because of (P,3) v, = 1 is valid we conclude from (6) and (33) that

o(6,q=0=0  (q. =0). (48)

By (38) the expansions of a(§,q) and b($, g) contain no contribution of order zero.
Inspecting now the relations (36) (48) resuls in

G =0 (g, =0). (49)

Referring to the discussion following (19) we want to stress that the situation G*? = 0,
g, # 0is not generic. Nevertheless this case will also be treated in the sequel. Its
meaning will become clear in the next section. Furthermore we have strong evidence
that in the case g, = ¢ the Taylor expansion of b(6,q,) contains no contribution of
first-order in 6. Even we are not able to show this relation in a strict sense we can
give a heuristic explanation in appendix B. As an immediate consequence we obtain
from (36)

Fi' =0 0= 0 (q. =0). (50)
But then the expansion (42) vields by taking (44) and (49) into account

G(8,q)=G" :Ag: 6+ O,

D(6,9) = (1G' : Aq: 6) + O, (51)
As D > 0 but (7 has no definite sign the relation

G'=0 (g, =0 (52)

follows from the constraint (41).
(ivygq=¢geTl,,6] 0. If one chooses a g value on the codimension two
phase-transition manifold (37) yields

F(§10,§)=F":G-q,:4-q,:+0(|§-q") =0
G610,9)=G":Gd-q.:4-9.:4-4q.: +0(|g—a.[) =0 (53)
which means
F2:2:2:=0 G¥:.z:x:0:=0 if & is tangent o I',. (34)

Mg=g¢€ f“(w),é ) 0. If the ¢ valuc is chosen on the codimension one
phase-transition manifold we get from (39)

- - 3 g - - - 2 - 7
(AF%:G-q.:Gd-q.: ) + (3G :¢—q.:d-q.:¢—q.:} +O(§-q.l)=0
(55)
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50 that

(%Foz:z P :)3+(%G03:m T ::!!:)2"—'0 if = is tangent to f‘(,-/j). (56)
By (54) and (56) the coefficients are related to the shape of the phase-transition

manifolds. By straightforward algebra the different cases ¢, = 0 and g, # © can be
discussed separatcly.

Case A. q, = 0. With respect to (44), (49), (50) and (52) expansion (42) reads as

F(é,q)= FP& 4+ F'' 1 q: 6+ F¥:q:9: 40,
G(6,q) =G 6°+G* 1q:6*+G?:q:¢q:64+G%:q:q:q:+0,. (57)
Introducing the scaling abbreviations

z =1 by, g=:¥6s (58)
the eigenvalue equation (35) can be written as

P34 Fy(8)0, + Go(s) + O(8) =0 (59)
where

Fuae):= FP4+ F 2 4F2% 22

Ga(e) =G+ G 12 :4+G P 12 +GP i w . (60)
The discriminant

D) = (L Fp(2)) + (1Ga(2)) (61)

determines whether (39) has entirely real or complex solutions. In the case D, <0
the three solutions are real which means that by (4) the frequencies vanish. In the
opposite case D, > 0 (61) allows for complex solutions that means non-vanishing
frequencies. The explicit solutions can be easily written down in both cases by using
the formula of Cardano. Rewriting these expressions for the old vanables (cf {58)
and (34)) one gets the scaling relation

v —1=8H (q/6) i=0,1,2 (62)
where

DA (w = -g—) > 0:
Hgo)(a:) = a,(x) + 2h%(2)

HE)(:!:) = Hf)'(m) = ap(®) - hi(z)+ i\/ﬁhg(m)

ORI S oNCIAR D@ 1= [4Da(2) v

ay(z) = —%(aw-f-a.m tx ) (63)
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and
D, (== %) <0
HO(2) := apg(x) + ra(z) cos(©,(=))
HU(2) := a,(e) + m4(z) cos (O ,(2) + £7)
H (@) 1= ap(x) + ra(2) cos (0(z) + &)

1/3 (1 + 4(1}"3%1&(;3)))1/6

rale):=2 ‘G—A;:ﬂ

4D,(=)
G5 (=)

S I

It should be stressed that the contribution a, of the scaling functions comes from
the expansion of the transformation (34).
Case B. g, # 0(G'® # 0). Using (44) one obtains for the expansion (42)

) € [0,n/3]. (64)

F(é,q)= FU+ F8T+ F'1: Aq: 6+ F: Aq: Aq: 40,
G(b,q)= G'6+ G+ G" 1 Aq: 6+ G*6*+ G : Aq: 87

+ G2 Aqg:Aq: 5+ G Aq: Aq:Ag: 40, (65)
With the scaling abbreviations

z =: 6%, Aqg=: 6% (66)
the eigenvalue equation (35) reads

$3 + F(8), + Gp(s) + O(8/%) =0 (67)
where

Fp(z):=F 2 x:

Gplz) =G+ Gz 2. (68)
Again the zeros of the discriminant

Dy(2) := (§ Fa(@))' + (4Cp(2)) (69)

separate the different regions in g-space where zero and non-vanishing frequencies
occur, The scaling relations can be obtained from (67) as in case A and read

(i)

Vg o 5173 4700) Aq o

u—‘—l_é/HB (m) i=0,1,2 (70
where H) is given by (63) and (64) with q/6, D4, Gu, ay, hi, 74, © 4 replaced
by Aq/61/3, Dy, Gy, ag, ki, rg, ©p. Here ap reads

ag(e) = -1a" 2. (71)
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Case C. q, # 0(G'® = 0). For later reference we also include this non-generic
case in our discussion. The expansion (42) is given by (65) by omitting the term
G196, Using the scaling abbreviations

z=: \/31[), Ag=: Vs (72)

Y2+ Fa(8)v, + Go(s) + O(V6) = 0. (73)
Here the definitions

Fel(x) = Flyr P00
Go(z) =G iz : 4+G%:z:x:w: (74)

have been used and the discriminant

determines the values of the frequencies. The scaling function in this case reads as

(i) .
=S —13\/51183(‘&

%) i=0,1,2 (76)

where Hg) is again given by (63) and (64) with the obvious substitutions and
ac(x) := ag(e) (cf (71)).

It is clear that the scaling relations for the characteristic functions, the damping
rates and the frequencies can be derived immediately from (3), (4), (62), (70) and
(76). These scaling relations can be briefly summarized in the equations

#(q) ~Inw, +5ﬂ¢(q—_~‘1:)
(1) oo gaz ([T~ 9 oy
Yq ~ &% (—6“ ) [=1,2

Wil ~ seel! (‘1_‘ q*) t=1,2, n

'5(!

Here the value of the exponent ¢ = 1, s 1 depends on the cases already discussed

and the scaling functions ¢, 5" and & possess two different analytical branches
rlpnpnrhng on the clgn of the diccriminant n{/\nlﬁa\ Table 2 summarizes the

LS A1 S riaasadms AL

results of this section and gives an overview of the scalmg functions. Finally we want
to note that (54) and (56) do not allow for a simple separation of tangent and normal
variations with respect to the phase-transition manifold. This is different to the case
of doubly degenerated eigenvalues where the separation is clearly reflected by (26)
and (31).
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Table 2. Scaling relations in the case of a triply degenerated eigenvalue and definition of
the scaling functions (X = A, B, (). For the explicit expressions we refer 1o (633 4),
(6445}, (60), (61), (68), (69), (71), (74) and (75).

q. =0 q. # 0(G1? #0) g« £0(G'° =10)
Da(a/6)>0  Dp(Aq/8/%) >0 De (aq/V3) >0

#(a) 883 (a/6) Inve+ 68232 (8g/87)  Inve+ V582 (8a/VF)

4§ =4 5% (a/9) 81353 (Aq/811%) Vo52 (aq/VE)

i) = §ay (g/6) §13LE {Ag/6t17) Vg (Aq/\/g)

Da(a/6) <0  Dp(Ag/8/3) <o D¢ (Aq/VE) <0

o(q) 535 (a/6) Inv. + 61935 (Ag/5177)  Inve+VE4E (Aa/VE)

Ny 0 afs) 8P (ag/e ) VE< (aaf V)

7" 650 (af8) SR (ng/81%) VERD< (8a/VE)

Wi = W) 0 0 0

<) := ax(z) + rx(x) cos Ox(x)
‘S‘grik(m) = rx(x)sin (@x(z) + )
"fg?k(:cJ = rx(z)sin (O x(z) + ;)

o3 (z) = ax(z) + h}(m)
"y}(:c) = 3h}(z)
@%{z) 1= -3k (=)

4. Examples

As shown in the preceeding sections a typical scaling behaviour emerges near the
degeneracy points of eigenvalues. Those degeneracies typically occur in the vicinity
of bifurcation points, especially when a crisis is involved in the bifurcation. In order
to gain some more insight into the three different cases analysed in the preceeding
section we want to discuss two simple examples. In general, model systems can be
analysed numerically by evaluating the quantity (3). This approach does not require
knowiedge of the transfer operator and leads to the scaling relations. But it usually
mquu"es a jarge numerical effort and is therefore b Ucyuuu the scope of this ariicle.
Analysing the transfer operator greatly simplifies of the calculation. It is, however,
difficult to derive an appropriate expression for the transfer operator of a specific
model system. We refer the reader to the literature for the treatment of special
examples [18, 19]. In order to avoid this tedious procedure we will concentrate

here on simple one-dimensional Markov maps for which the transfer operator can be
annh}ti&d at least apprnv\mm;.nhr without great effort

Xima Nevertheless our models have
some general properties which can also be expected to be valid in more complicated
systems.

As a first example let us consider a one-dimensional expanding Markov map
which has been derived as a crude approximation for the Lorenz equationst {17} (cf
figure 3). Below the bifurcation point the system admits a chaotic invariant set which
undergoes an interior crisis as the bifurcation point is reached. The transition matrix,
that means the matrix representation of the Frobenius—Perron operator for this map
is easily written down. In the vicinity of the bifurcation point this large matrix can be

t In contrast to the original Lorenz equations this map has two unstable fixed points outside the chaotic
invariant set in order to yield a chaotic atiractor on both sides of the bifurcation poini.
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1
i

LA
‘:
!
A0
Y

Figure 3. Inversion symmetric Markov map afler suffering an interior crisis (solid ling).
The box indicates the domain of the former attractor and § denotes the bifurcation
parameter, Furthermore the functions w(x) (broken line) and v(z) (dotted line) used
for evaluating the characteristic function are shown.

approximated by a transition matrix between the two unstable fixed points and the
chaotic repellor [20], an aproximation which also seems to be reasonable from the
physical point of view

l—a &2 0
fat 1-46 o . (78)
0 6f2 1-a

Here o denotes the escape rate from the unstable fixed point and 6 < 1 the transition
rate from the chaotic repellor to one of the fixed points. The dependence of the latter
on the bifurcation parameter of the mapping depends on jts geometric properties but
is finear in ihe case of Markov maps. The inversion symmeiry of the mapping has lead
to a symmetry property of the matrix (78). In order to analyse the bifurcation using
the quantity (3) a two valued function u(xz} = (u(zx), v(z)) seems to be appropriate
where u denotes an even and v an odd function of its argument. The simplest choice
is depicted in figure 3, where u and v take the values 1,0,1 respectively —1,0,1 in

the nelghbourhood of the rclevant repellors. Taking the transition matrix (78) into

arcannt the matriv renroc

onta erator then reads as
aCllOunt uid MailiX Tepiisthila CIalor 1 cad

(1—cjer~? §/2 0
(My) = oaef~9 1-6 aefte (79
0 62 (1 - a)ett?

i

where g (p, a). It is worth men[mnmn that the exnression L)) which was derived

q). expression
for a very special model system depends only on the symmetry of the system and
the type of the bifurcation mentioned earlier. Although the dependence of o and
6 on the parameters of the system is based on the special features of the system
in a complicated manner it is expected that our simple model shares many of the

properties emerging in more complicated ones. At the bifurcation point é | 0 the
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operator (79) possesses a triply degenerated eigenvalue v, at the phase-transition
point (p.,q,)

(1—a)e " =1=(1—-a)e’t" =y, (80)

and two linearly independent eigenvectors. Furthermore three phase-transition lines
{(p.@)lg—q :=Dqg=0,p—p, := Ap > 0}, {(p,q)|Ap = Aq < 0} and
{{p,9) | Ap= —Aq < 0} meet in this point. These phase-transition lines divide the
g-plane into three phases which are determined by the two unstable fixed points and
the chaotic invariant set respectively. To investigate the scaling behaviour emerging
for § > 0 we analyse the eigenvalue equation of the expression (79). The coefficients
of the characteristic equation (35) read in this case
F(8,q) = ~}a(e

x (e2?¥81 _ | 4 §)
G(8,q) = $G{eSTTO9 (B2 | 4 §) 4 2P~ 29(e2PHAT _ 1 1 §)

— (etlw&q _ eAP—Aq)z}g + %(eﬁp—ﬁq -1)

x (eﬁ‘.p-i-ﬁq - 1)6-— %{(eép—ﬁ\q _ 1)3 _ 53 + (ez‘)p-i-éq _ 1)3}

+ .E,Lf(eAP-Aq + edrtag _ o _ 6)3 (81)

where
&= of(l - ). (82)

Inspecting (81,) we recognize that 1Y = 0 holds so that case C of section 3 applies.
The coefficients entering the scaling functions (74) read

F1%8 = —&é
102 L A v As = _1rA.nN2 A2

el Y e TR L] \=a )
G':Aq: 6= %dAp(i

03 . . — 2 (Ap)? 2
G" i Aq:Aq:Aq:= %Ap (T—(Aq) (83)
and (74) results in
Fo(s,ty = —a — 1s* - 1*
& s° .

Ge(s,1)=2s (;4-?_12). (84)

Here the abbreviations s, = s = Ap/V§, s, = t = Aq/Vé have been used. The
discriminant (75) is, in this case, negative which can be checked by a straightforward
computation. As a consequence only real eigenvalues that means vanishing frequen-
cies occur in the vicinity of the phasc-transition point and the scaling functions are
given by the second part of the third column in table 2.
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As shown in the previous example the symmetry of the system has lead to the
occurrence of the non-generic case C. In order to discuss the more general case we
have to refer back to models which do not share this property. As we are only
interested in the principal aspect of this case we will directly investigate a simple
matrix representation of the transfer operator although we can aiso find simple one-
dimensional and probably higher dimensional maps from which it can be derived. Let
us consider a system which admits one attracting and two repelling sets which decay
towards the former one. As a bifurcation parameter is changed a crisis should occur
where a transition from the attracting set to one of the repellors should be possible.
Then the transition matrix reads as

) . (85)
!

1-4 X2y Q3
0 1-ay gy
é 0 -y —
where & « 1 denotes the bifurcation parameter and «,; the decay rates of the
repelling sets. If we again consider the observable u(z) = (u(zx),wv(x)) taking
constant values 1,0,1 and —1,0,1 respectively on the attracting and the repelling
sets then the transfer operator admits the simple matrix representation

F e
i )

(1 —6)eP—e Qg g ef 1y
(’H;‘) = 0 1 — gy CeypePta . (86)
deP—1 0 (1 — gy — Crgy)ePte

Due to the introduction of two fluctuating quantities we are able 0 detect the two
level internal structure of the repeller. At the bifurcation point § | 0 the operator
(86) yieids a triply degenerated eigenvaiue v, at the phase-transition point (p,,q,)

el 7 =1 — oy = (1 - ag — ayy)e™ VT =y, 87}

where the three phase-transition lines {(p,q}|Ap = Aq € 0}, {(p,q)|Ap =
—Ag £ 0} and {(p,q}| Aqg = 0,Ap > 0} meet. Furthermore one easily recog-
nizes that the operator admits only one eigenvector which is the generic case. In the
case § > 0 the characteristic equarion of the matrix (86} can be obtained after an
clementary but exhausting computation. Rewriting it in the form (35) we get for the
coefficients

F(8,q) = 5,676 — L{(1— 6)edr=27 _ gAr+87)2 _ Li(} _ §)eAp=47 _ 1}
% {eﬁ;n-i-::\q _ 1}
G(6,9) = — iy, Gryye?®P6 — Ly, {(1 = §)ePP™ 20 4 oBP+8T _ )27 6

= F{(1 = 6)etr7AT — 1} — Z{ArHad 1)

+ %{(1 - é)eﬁp—bq + eAp+Aq —2}{(1 _ 6)eAp—Aq _ 1}{eAp+Aq _ 1}

SO0
{oo)
where the abbreviations
- x - (43 - [5 7PN
a21 = .-._.._2_1._.- 031 it .._.__._.:.3..1..___— 0532 to= _l____._._a_"_._-.-_ (89)
1 —ay, I —oxg) — gy — Qi3] ~ Qg
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Figure 4. Diagrammatic view of the region in ¢-space containing finite (requencies in
the case § > 0. The full curves denote the phase-transition lines (6§ | 0) and the broken
curves the lines of doubly degenerated eigenvalues (§ | 0) which can be obtained from
(39), (68), (69) and (90).

have been used. Clearly G'° # 0 holds so that case B applies. The coefficients
contributing to the scaling functions (68) can be immediately derived. One gets

F2:Aq:Aq:= —%(Ap)2 —(Aq¢)?
G = — &y &qn6

)2
G°3:Aq:Aq:Aq:= %Ap ((/_\9]) —(AQ)Q) (50)

and the explicit expressions for the scaling functions read as

52

Fa(s, t) = —13—-1.2

Gpls,1) = —&, 8y + s (? - t2> : o)

Here the abbreviations s, = s = Ap/§'/%, s, =1 = Aq/6'/3 have been introduced.
The discriminant (69) is written as

2

2 3 5o & 2
Dg(s,1) =~ (%ﬂ?) +(a9’%"”+§(%——z2)) G

4

Setting this expression equal to zero determines the border line between vanishing
and non-vanishing frequencies. It is sketched in figure 4. In the vicinity of the
phase-transition point frequencies of order O(8'/%) occur. Furthermore one recog-
nizes the remarkable fact that far away from the phase-transition point non-vanishing
frequencies aiso emerge in regions of doubly degencrated cigenvalues. This is highly
plausible as doubly degenerated real eigenvalues might become complex valued by a
small perturbation. On the phase-transition lines, however, this effect is suppressed
as the largest eigenvalue has to be a real quantity,
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As shown by these examples the three cases A, B, C mentioned in section 3 reflect
the number of eigenvectors that the transfer operator admits at the bifurcation point.
Therefore the scaling behaviour allows for an investigation of the spectral properties
even if an explicit representation for the transfer operator is not known.

5. Conclusion

In this article we have extended a previously developed idea [11] to derive scaling
relations in the vicinity of g-phase transition points from a rather general point of
view. The generality of our approach is based on avoiding any reference to special
dynamical systems but starting directly from the characteristic equation of the transfer
operator which determines the eigenvalues of interest. Using a few general properties
of this equation we have shown that the relevant thermodynamical quantities obey
in general a scaling relation of the form &% H({(gq — q,)/6%). Furthermore we have
been able to derive explicit expressions for the scaling functions in a mean-field-
like way. Besides this the analytical expression for the scaling function depends
only on the number of eigenvaiues which become degenerated at the bifurcation
point and cause the phase transition. The surprising observation that these scaling
functions have turned out to be rather independent of the special dynamical system
[21] is explained by our results in a clear way. But we note that our approach
cannot link the concrete bifurcation parameter of a dynamical system (e.g. an inverse-
transition time) to our scaling parameter § in general. We suppose that such a
relation depends on special properties of the dynamical system under consideration
[4]. As we have aliowed for the treatment of the multivariable case in our framework
higher-order degeneracies of eigenvalues can also be achieved in a generic way.
The associated phase transitions clearly display the different local structures of the
invariant set involved. The treatment of the scaling behaviour in their vicinity has
shown that finite frequencies might emerge which mirror the degeneracy of low-lying

eigenvalues. Finally we want to stress that cur approach is general enough to capture

quite different situations which can be described by a transfer operator. Considering,
for example, stochastic nonlinear systems it is clear that our approach yields a noise
induced scaling behaviour in the vicinity of the phase-transition point even if the
precise dependence of the scaling parameter & on the noise strength is unknown a

priori. We conclude that phase transitions involving a finite number of eigenvalues
ara Capturcd h\r our treatment in a unified way. Nevertheless certain kinds of non-

Aiamranedir s LiAdix auAaaved ass SRS

hyperbolic suuatlons, where a continuous part of the spectrum is involved in the
phase-transition [9, 10}, demands for further investigations.
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Appendix A

Instead of (P,4) let us assume that the characteristic equation (5) admits one real and
two complex conjugated solutions in the vicinity of the phase-transition point (6 | 0).
As we are only interested in the principal aspect of this case we want to restrict the
discussion to two variables (Af = 2) and denote the corresponding parameters by
g = (p,q¢) to avoid unnecessary indices. For reasons that will finally become clear
we concentrate on the case 6 | 0 and on the discussion of the phase- transmon liness},
The main fcatures are displayed in figure 5 and we show in the sequel that they occur
generically.

By the presupposition made above, (5) simplifies in the vicinity of the phase-

transition point (p,,q,) to

{zi —1- A(Ap,Aq)} { (;ﬂ _ 1) + B(Ap,Aq) (: - 1)

+C(Ap,Ag)} =0 (93)

if the three largest eigenvalues are considered. Here Ap :=p—p,, Ag:=¢—q,,

s 1 L A A AaY vialde the real aigenvaliie and the rmothiciante A R Y
Vo = Vol T ALp, afg)) yikilus UL ICar Cigenvdide anu il LoCadicns A, o,

are ana]yt;cal functions of their arguments. The zerc-order term in their expansions
vanishes due to (P 1). Additionally the first-order contribution to C(Ap, Agq) does
not vanish as (93) should yield a complex solution in the neighbourhood of the
phase-transition point. Elimination of the quadratic term in v, /v, — 1 by a linear
transformation results in (35) where

F(Ap,Aq)=C— AB - L(B - A)?
G(Ap,Ag)=-CA-L(C-—AB)(B-A)+ &(B-AP.  (94)

The arguments of A, B and C have becn suppressed to simplify the notation. In
contrast to (44) the expansions of F' and & contain contributions of the order O,
and O,. By (94) both quantities are related via

G(Ap,Aq) = —LF(Ap,Aq) {2A + B} - L {24 + B)®. (95)

We are interested in the phase-transition lines which are determined by a degener-
ated eigenvalue. Referring back to (39) these lines are given by the zeros of the
discriminant. Using (95) this condition reads

2
0= D(Ap,Aq) = £ {F(A}),Aq) +1l2a+ B)z}

x {F(Ap,Aq) + 5 (24 + BY' }. (%)

So we obtain two phase-transition lines in the vicinity of the codimension two phase-
transition point which are given by the equations
[:,1 ={(p,q)|FlAap,Aq) = —%(QA + B)*}

Ty ={(p, )| F(Ap,Aq) = —15(2A + B)?}. O7)

T The argument 8 | 0 will be suppressed in the notation.
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These expressions are a trivial consequence of (93). The shape of these lines can easily
be obtained using the Taylor expansions of F, A, B. They are qualitatively displayed
in figure 5. Inspecting (96) one recognizes that the sign of D does not change if
one crosses [, (D < 0) whereas it changes by crossing T',. Referring back to (41)
this means that on T'; two real eigenvalues become degenerate whereas on T, a pair
of complex conjugated eigenvalues is born. Due to the requircment that the largest
eigenvalue is real the last-mentioned transition takes place bétween the lower lving

Yilig
eigenvalues. Figure 5 summarizes our outcomes.

"

*'E

ﬁ\s\\\\\\\\\\\ .q

Figure 5. Diagrammatic view of the phase-transition line (thick line) and the line of
degeneracy between the lower lying eigenvalues (thin line). In the hatched region the
system possesses complex eigenvalues.

It is rather unlikely that the strange looking phase diagram (figare 5) occurs
in dynamical systems. On the one hand this kind of phase diagram has not been
observed in any dynamical system. On the other hand we have some evidence but no
proof at hand that this kind of phase transition is impossible.

Appendix B

Our considerations will mainly be based on the Markov property of the operator (2)
J[('H u.oh)(z)d [h(:c)da: (98)

which has not yet been used. Suppose that the transfer operator admits some probably
infinite dimensional matrix representation at ¢ = g, = 0. It possesses by presup-
position three eigenvalues which are well separated from the remaining part of the
spectrum. For this reason the matrix representation can be cast inta the block form

(HE _y) = (” ) 99)
0 .

where H denotes a 3 x 3 matrix which determines the properties of the characteristic
equation (33). Concentrating for a moment on the limit é | 0 H possesses the
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triply degenerated eigenvalue v, = 1. Furthermore from (98) and the structure (99)
we concjude that the sum of column elements of H equals 1. Both requirements
determine H uniquely as the identity matrix. Investigating now the case & > 0 we
remark that the off-diagonal matrix elements have to be of the order O{§}. Otherwise
the presupposition (P,2) is violated. By this reasoning H takes the form

{1- 61— 813 8oy 8z 3
H= k TP 1= b6y = bag 839 ) (100)
6.3 693 1 =83, = b3

where 5, ;= O(5). The characteristic equation (33) at g = 0 is determined by

(Vq' — 1465+ 65 —&y —b3 \
0 = det —A. s — 148 LA —4 (1011
hd e 12 Yq A1 vV T V23 va2 \ryay

\ —b13 =8y vg =1+ 83+ b3

From this equation it is obvious that b(é,q = 0) contains no contribution of first-
order, that means b!0 = 0.

Appendix C

As mentioned in the introduction the characteristic function ¢(gq) is strongly
related to the fluctuations of the temporal coarse grained quantity U, (z) =
Yo u(Ti(z))/n. We want to make this statement explicit in this appendix.

Let us introduce the distribution function of the fluctuating quantity U,

pul@) = (8(a—U, () ~ e ") (102)

where e« = (e,,...,a,,) and the asymptotic behaviour stated on the right-hand
side defines the fluctuation spectrum o(a) [12, 22]). In the long time limit U,
approaches its ensemble average (u) and p, tends towards the S-distribution as
o(a) 2 o({u)) = 0. Clearly o(«) explicitly contains the large fluctuations of U, .

PERY

inserting (i02) into the definition (3) we obtain
. 1
#(g) = lim —ln/e““qp,l(u)da. (103)
n—oo 11

Using the asymptotic behaviour and evaluating the right-hand side with the saddle
point method we end up with the relation [12, 23]

d(q) = —mzjn{cr(:c)—q:m}. (104)
This Legendre-Fenchel transform can be inverted casily leading to
ola) = - mJn{dJ(y) - ay}. (105)

Assuming the smoothness of ¢ and o the relations (104) and (105) can be cast into
a form more suitable for explicit evaluations. Delfining the functions &(q) and §(a)
via the relations

 Ba(=z) _ 9d(y)

1= "5, |==ala) o= Jy (v=te) (106)
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the transformation reduces to

(g} = qa(q) — o{a(q)) o(a) = ag(a) - ¢(ga)). (107)

The scaling behaviour of ¢

¢(q) =1Inwv, +6“q5( _aq‘) (108)

AN

O

discovered in sections 2 and 3 carries over to a scaling behaviour for the fluctuation
spectrum. From (106) and (108) we get

a(y)
O= gy lv=lamaa)/se =g (109)

so that (107) yields the scaling relation
o(a) = aq, - Inv, + §*{aj(a) - &(F(a))}. (110)

Concerning the explicit expressions of ¢ and a we refer the reader to tables 1 and 2.
Instead of performing the Legendre-Fenchel transform in (104) and (105) with

respect o all yarinhlas + and v .r m naccihkla vl trh oo tha
eSpoelt W0 4an vVdlildoies ¢ aliv & It l.:uaouuu 1o introduce \.lualluu\aa where tne

transformation is applied only to some of the arguments, The meaning of these
quantities can bc guessed from the considerations already made. Let us split the
observables u and the parameters g into two groups u = (u(), u{?)) and ¢ =
(¢'",q®). Having the definition (3) in mind one of the authors introduced a

characteristic function with respect to the variables (!} under the constraint that the

variables rr(2) take fixed values a(® [12]

AgD,a®) = lim ;1-1-in(exp(nq(l)U,(ll)(m))é'(a(gl —UP(2))). (111)

Here the obvious abbreviation U (2} := Yin wt(Ti(2))/n, k=1,2 has been
used. The functlon A(gt) 1(2)) thus descnbes the cross correlation between the

local averages U,‘L ' and U,: ’. Now we proceed along the lines presented above.
Using (102), (111) reduces to

1 1
AlgY,a®y = lim = 1In /e’“?( Jat! } . (alV, al)datV (112)

00 1

where, ﬁ_th respect to the previously mentioned separation, the notation a =
(oD, a®)) has been introduced. The asymptotic behaviour of p, and the saddle
point method allow for an evaluation of the integral with the result

A(q™), ) = —min{o(a!),al®) - ¢z}, (113)
wl

Assuming the smoothness of the functions involvcd this equation can be further
a =2/ (1\

simplified. Introducing the functions &l {gtt) Va2 and @2{¢0, al?) via
W o, dal=D,al®)
q ()
2y . d¢(q(l » Y 2))
al® = 2E -d
8'_,)(2]

m(l)zéfll(q(l)'au))

(114)

(@) 24021 (g1} al2)}
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we obtain

Al a®) = g0a(gM, af?) - o(aMD(gD), al?), al?)
= ¢(q'V, 3P (g, a?)) — g (g1, alP)al?, (115)

The last equality can be derived by expressing o by ¢ via (106) and (107). Applying
(108) we finally get the scaling behaviour

(1) 0
AlgD, a®) =1n v, — ¢Pa® 4 g0 {55 (L”&'%L,gm) (2(_11534_*_,&(2)))

1 (1
e (q( )(s—aq* ’am) a(m} (116)

where the function §(? is according to (114) defined by

8¢ ((q“) - qﬁl))/éaay(”)

(2) —.
o = 8‘_!}(2)

yu);(qm)_qizl)/an:ﬁ(nl((qu}_qi”)/an.a(:)) .

(117)
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