
On the scaling laws of higher-order q-phase transitions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1992 J. Phys. A: Math. Gen. 25 3567

(http://iopscience.iop.org/0305-4470/25/12/018)

Download details:

IP Address: 171.66.16.58

The article was downloaded on 01/06/2010 at 16:40

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/25/12
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys A Malh. Gen. 25 (1992) 3567-3592. Printed in the UK 
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AbslracL q-phase Vansition p i n t s  in the mntext of Ule thermodynamical formalrsm of 
dynamical systems arise via the degeneracy of eigenvalues of the mrresponding lransfer 
operator. n e  Scaling behaviour near tifurcation points of dynamical systems is investi- 
gated by a mean-field-like expansion for the characteristic equation of this operator. Scal- 
ing relations in the vicinity of q-phase-lransition p in ts ,  which are brought about bj a dou- 
bly (respectively Uiply) degenerated eigenvalue, are explicitly derived. For the character- 
istic function (topological pressure) this relation reads +(q)  E In ~ . + 6 * & ( q - q . ) / 5 ~ )  

propenies of the phase-lransition p i n t .  ?he appmaeh explains the universal fa lures  of 
lhe Scaling behaviour. 

where !hC ..pKnt a = 1, ;, 5 nf !kC bi':Katias anme!C: 5 depends en generl?! 

1. Introduction 

The thermodynamical formalism originally introduced in the context of the ergodic 
theoly of dynamical systems and the mathematical formulation of equilibrium statis- 
tical mechanics [I, 21 has been applied recently to problems in nonlinear dynamics, 
chaotic systems and turbulence 13-51, The aim of this approach consists in the in- 
vestigation of temporal coarse grained, that means finite-time averaged, quantities 
and their fluctuations due to the irregular motion in the system under consideration. 
Usually one considers the fluctuations of the local expansion rate, which is due to 
Bowen's theorem [2], of special importance; but also different quantities have been 
treated in this context 151. It has been shown that the large fluctuations contain the 
essential information about the dynamics and the structure of the strange invariant set 
161. These large fluctuations can be described appropriately by a characteristic func- 
tion +(q),  referred to as topological pressure in the mathematical literature, which 
corresponds to the free energy ai statisticai mechanics in tne previousiy mentioned 
thermodynamical formulation. Non-analyticities in this function, called q-phase tran- 
sitions, indicate a singular local structure of the chaotic attractor 17. f i r  this reason 
these transitions can be observed at bifurcation points of dynamical systems, especially 
at crisis points, and a typical scaling behaviour in the quantities of interest emerges 
in their vicinity [8-10]. In a preceding publication we have pointed to an explanation 

special system under consideration [Ill. It is the aim of this article to extend this 
idea to more complicated bifurcations. 

fur &e sutpnsing fast that t.ne mriespii(Jiiig sujing functiom Go noi depend oii the 

t P m c n l  address: Theorelishe Feslkbrperphysik, Technische Hochschule Darmstadl, Hochschulstraue 8, 
D-6100 Damstadt, Federal Republic of Germany. 
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Tb be definite and to state the notation let us consider a discrete dynamical sys- 
tem z , + ~  = T(z,,) although our approach is applicable to more general situations 
as will become clear in the sequel. As a slight generalization of the usual thermody- 
namical formalism we want to investigate the fluctuations of several scalar quantities 
ul(z),. .. ,u,,,,(z) [12]. Following the lines of the one observable case the essential 
information concerning the nonlinear system is contained in the generating function 

Here q = ( q l , .  . .,(I,,,,) and = ( U , ,  . . . , 7 1 ~ )  denote a shorthand vector notation, 
Ti means the i-times iterated map T and the ensemble average (. . .) is meant with 
respect to a distribution of initial points which is usually assumed to be the natural 
one (SRB measure). The expansion on the right-hand side of (1) can be understood 
easily by using a transfer operator whose explicit expression reads in this context as 
~ 3 1  

( ? f ~ h ) ( z )  := 6( :c  - T(y))eq'"(Y)la(y)dy. (2) s 
The main behaviour of the expansion (1) is determined by the eigenvalues U:) of 
this operatort where for simplicity in the notation we want to assume a discrete 
spectrum ordered according to the relation v!$) 2 [djl)l 2 I I I ~ ) ~ ,  0 < 1 < k although 
a continuous part can be incorporated directly in our approach. The quantities of 
interest, the characteristic function (topological pressure) 

which determines the stationary fluctuations of u ( z )  as soon as the damping rates 
yf) and the corresponding frequencies uq ( 1 )  governing the temporal correlations [14] 

can be related to the eigenvalues of the operator (2). A phase transition that means 
a non-analyticity in the quantities (3) and (4) is brought about by a degeneracy of 
eigenvalues. This situation can occur at bifurcation points of dynamical systems [9, 
151. In a preceding publication [ I l l  we have shown that, for the case of a doubly 
degenerated eigenvalue, the scaling behaviour in the vicinity of a bifurcation point 
can be obtained in a general way from the characteristic equation of the operator (2) 

P ( v q , 6 , ( I )  = 0. (5) 

Here 6 0 denotes a bifurcation parameter leading to a bifurcation that means 
leading to a degeneracy of eigenvalues in the limit 6 1 0. It is the objective of this 

t 8' denote some apansion coetliciriits 
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publication to extend this approach beyond the case of a doubly degenerated eigen- 
value as well as to incorporate the multivariable case q = ( ql,. . . , q M ) .  It should he  
pointed out that our approach yields a theoretica1,explanation for the Occurrence of 
the scaling behaviour and the general form of the scaling functions which is indepen- 
dent of the model under consideration. In section 2 we review the previously treated 
situation for the broader multivariable case. Section 3 contains the discussion of the  
more involved case of a triply degenerated eigenvalue. Some illustrative examples a r e  
investigated in section 4. Finally our results will be summarized. 

2. Doubly degenerated eigenvalue 

The  main idea in deriving the scaling relation from (5) is based on a few reasonable 
presuppositions and needs no explicit reference to a special dynamical system. For 
the situation treated in this section these presuppositions read as follows. 

(Pdl) Equation (5) should yield two largest eigenvalues which are well separated 
from the remaining part of the spectrum. The  largest eigenvalue should be real. In 
the limit 6 1 0 they should become degenerated $)(6 1 0) = $ ) ( 6  IO) for certain 
q values leading to a phase transition. 

(Pd2) Equation (5) should be analytic in 6 and q. 
(P,3) The system should admit an attracting set so that q = 0, vq = 1 is the 

largest solution of (5) for all values of 6 [16]. That means 

P(uq = 1 , 6 , q  = 0) = 0. (6) 

Before we proceed a few remarks on the meaning of these presuppositions seem 
to be  suitable. The first presupposition restricts the bifurcation of the dynamical 
system to a certain class which contains, for example, the symmetry breaking chaos 
transition [15]. Especially when chaotic sets a re  involved in the bifurcation it has 
turned out that often only a finite number of eigenvalues govern the phase transition. 
The second presupposition puts some constraints on the choice of the bifurcation 
parameter. Our  parameter 6 is in general a function of the bifurcation parameters of 
the original system whose explicit relation to the latter is not needed for the present 
purpose. Although our approach cannot yield this relation a priori it can be easily 
determined apostenori if the scaling behaviour is, for example, computed numerically. 
Contrary to these the third presupposition is not essential and can be omitted if one  
wants to treat repelling invariant sets. 

Let us begin the derivation of the scaling relations by inspecting the situation a t  
the bifurcation point 6 1 0. In general the eigenvalues v!j0(6 1 0) can be viewed as 
hyperspheres in the g-u,-space where due  to (P,,1) the hyperspheres $ ’ (6  L 0) and 
v2)(6 1 0)  cross along the set (cf figure I) 

This codimension 1 manifold in the q s p a c e  yields the phase-transition line. Figure 1 
displays the geometrical settings described earlier. Let us now consider how this 
situation changes if a non-vanishing bifurcation parameter is introduced. For this 
reason let q. E r. denote a f i e d  but arbitrary chosen point on the phase-transition 
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Figure 1. Diagrammatic new of the eigenvalues goveming a phase transition based on 
a double d e g e n e n j  ( 6  1 0) .  ”bo’. v;’ denote the WO largest eigenvalues and r. 
lhe phase-transition line in llle two-dimensional q-space ( M  = 2). ?he fued chosen 
phase-transition p i n t  (U*, 9.) and a vector n normal to the phase-transition line are 
also indicated. 

line and U, := U:)( 6 1 0) the corresponding eigenvalue. Owing to (Pd 1) a second- 
order polynomial can he extracted from the characteristic equation so that (5) reads 

where P denotes the non-vanishing part in the vicinity of the phase-transition point 
U = v,, 6 1 0 ,  q = 9,. The first factor is written in the variable vq/v. - 1 for 
simplicity. For 6 E r,, 6 1 0  equation (8) yields, due  to (Pdl) ,  a doubly degenerated 
solution so that 

P 

d 6  1 o , n )  = i f 2 ( &  I 0 % ~ )  n E r*. (9) 

Especially for 6 = q, this eigenvalue is given by U, which results in the stronger 
relations 

f ( 6  I0,q.) = 0 s(6 I O , q , )  = 0. (10) 

After these general considerations (P,,2) guarantees the existence OF a Thylor expan- 
sion of the functions f and 9. %king (10) into account it reads 

f ( 6 , q )  = f ” 6  + f o l  : Aq : +(I, 
g ( 6 , ~ )  = g ’ “ 6  + go’ : Aq : +g2”6’ + g” : Aq : 6 + go’ : Aq : Aq : +O, 

(11) 

where the abbreviating notation 

R: a: z : . . .  :a : = 
- times 

B,,, ,..., N,‘T,, ‘ ‘ . - 
,&-times 

- ,‘I’.Y 
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and 

aq := q - q, (13) 

has been introduced and 0, denotes the contribution of n th  and higher order. The 
coefficients in the expansion (11) are now restricted by our presuppositions as can he 
seen in the following way: 

(i) 6 10. Then, taking the expansion (11) into account, (8) yields 

By (P,1) this equation admits a real solution. But as Aq has no definite sign the 
relation 

go' = 0 (15) 

follows. 
(ii) q = 9.. Now (8) and (11) lead to 

The same reasoning as above yields 

g'0 < 0 (17) 

where the difference from (15) comes from the fact that 6 can take only non-negative 
vaiues. 

(iii) q. = 0. This case can occur if the phase-transition manifold (7) crosses the 
origin of the q-space. Then by (Pd3) U, = 1 holds and by making reference to (6), 
(8) yields, 

g(6 ,q  = 0 )  = 0 ( q .  = 0). (18) 

g'0 = 0 g?0 = 0 ( n .  = 0). (19) 

Inspecting the expansion (11) one obtains 

Therefore the relation q. = 0 implies g" = 0. The reverse is, in general, not 
valid but holds in the generic case as q, f. U, g1° = 0 would require an additional 
constraint which can he removed by a small perturbation. For this reason we will 
concentrate on the cases q. = 0, gin  = 0 respectively q. $ U, 9'' < 0 and omit the 
previously mentioned non-generic situation. 

(iv) q = 4 E r., 6 1 0: Then (9) and expansion (11) yield 
2 g 02 .q-q.:G-q*:-+(f . - n i  . P a : )  , - +O(IG-q.l3)=0 (20) 

whk!! means !ha! 
2 

go* : : z : -+  ( f n '  : I :) = o if z is tangent to r.. (21) 
Due to this relation the expansion coetficients are related to the shape of the phase- 
transition line. 
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With these settings the two different cases q. = 0 and q. # 0 can he analysed 

Case A. q, = 0. By making reference to (15) and (19) expansion (11) reads 
easily. 

f ( 6 , q )  = f''6 + f o l  : q : +O, 

g ( 6 , q )  = g" : q :  6 + g o 2  : q :  q :  +O, 

Using the scaling abbreviations 

U 'I - 1 =: 6@, q =: 6s (23) 

where $, and s are of the order O(1) in the limit of small 6 the characteristic 
equation (8) reads 

0 = @: + (f" + f a '  : 8 :)$* + g" : s : +go' : s : s : + 0 ( 6 )  (24) 

and leads to the following asymptotic behaviour in the region 0 < 6 << I t  

$?/')E -$ ( f "+fo '  : s :)i (25) 

This expression can he considerably simplified if one splits s in a tangent and normal 
part according to s = sT + ( s n ) ? ~ .  Here 1% denotes a vector normal to the phase- 
transition manifold at q. (cf figure 1). Inserting this in the radicant of (U) and using 
the relation (21) the second-order contribution in sT vanishes. Then the radicant 
has the general form A : sT : +E3 where the coefficients A and B depend on the 
normal part (sm). If the coeliicient A does not vanish identically this expression 
takes negative values by choosing .qT appropriately. As a consequence @. becomes a 
complex quantity in contradiction to (Pd 1). Hence A vanishes identically which means 
that only the normal part ( 8 n ) n  contributes to the square root. Finally rewriting (25) 
for the original quantities (23) one obtains the scaling relation 

: ( f l o +  f"' : s :), -g" : s : -go, : s : s :. 

H ! / l ) ( i )  := -$ ( f l '  + f ' l i )  * Ji(fl' + f ' " ( ~ n ) ) ~  - g " ( z n )  -g02(zn)2 (26) 

where f o l  := f o l  : :, g" := g" : 11 : and go=  := go2 : TL : n :. Both terms of the 
scaling function can be easily interpreted. The first contribution arises through the 
q dependence of the eigenvalues which is also present in the 'unperturbed' (6 IO) 
system. The square root yields a q-dependent scaling normal to the phase-transition 
manifold. If one varies q along this manifold this term yields only a constant difference 
between the eigenvalues resulting from the finite value of the bifurcation parameter. 

Case E. q. # 0. Then by (15) and the remark following (19) the expansion (11) 
reads 

f ( 6 , q )  = f o L  : Aq : +0(6,lAql2) 

Y ( ~ , Y )  = Y "6 + go' : Aq : Aq : +O(62,61Aql, lad). (27) 

t The + sign corresponds to qp' as U?' 2 ut' '  
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Introducing the different scaling ahhreviations 

(28) ”q - - 1 =: ”* Aq =: f i s  

due to the fact that g contains a first-order contribution the characteristic equation 
(8) reads 

0 = 4; + f0 ’  : s : + g’0 .+ $2 : s : s : +O(&) (29) 

and possesses the asymptotic solution 

$ y l )  -;f01 : * J i ( f O I  : :)2 -p:  : -p. (30) 

The same reasoning as presented in case A yields the scaling relation 

where fo’  := f o l  : n :, go’ ’- ._ go‘ : : V L  : and ti denotes a vector normal 
to the phase-transition manifold at q.. Concerning the discussion of the different 
contributions of the scaling function we refer to case k 

Table L Scaling relations in lhr case of a doubly degenerated eigenvalue and definition 
of 1lie so-ling funelions ( X  = A ,  €8). Far the explicit expre-ions we refer lo (26,) and 
(312). 

It goes without saying that the scaling relations for the characteristic function 4 
and the damping rates can he immediately obtained from (3), (4), (26) and (31). 
a b l e  1 summarizes the main results of this scction. 

3. ’kiply degenernted eigenvalue 

Let us now concentrate on the main part of this article, the case of a bifurcation 
leading to a triply degenerated eigenvalue of the transfer operator. Before we are 
going into the details some general remarks seem to he necessary. It is reasonable to 
assume that simple bifurcations of chaotic sets governed by one bifurcation parameter 



3.574 

lead to a doubly degenerated eigenvalue of the transfer operator. This situation is 
similar to local codimension one bifurcations in the theory of ordinary differential 
equations where only one or a pair of complex conjugated eigenvalues crosses the 
imaginary axis. ?b produce generically higher-order codimension bifurcations several 
parameters have to be introduced into the unfolding [17]. This indicates that in the 
case considered here several parameters must also be introduced, whereas we have 
two possibilities. On the one hand one can consider the situation of more than one 
bifurcation parameter. On the other hand one can enlarge the set of fluctuating 
variables U ( . ) .  We follow in this article the second idea which yields in a loose 
thermodynamical analogy a more than one-dimensional phase space (q-space). It 
has been demonstrated by analysing several examples that in this case a higher-order 
phase-transition emerges [12, 181. We want to investigate the scaling behaviour near 
these phase-transition points from our general p i n t  of view. 

Let us now state the presuppositions necessary to derive the scaling behaviour 
from (5): 

(Pt 1) Equation (5) should admit three largest eigenvalues which are well separated 
from the remaining part of the spectrum. The largest eigenvalue should be positive. 
In the limit 6 1 0 the eigenvalues should become degenerated $ ) ( 6  -1 0) = uF’(6 1 
0) = $’(6 10)  for certain q values leading to a phase transition. 

W Just and H Fujisaka 

(Pt2) Identical to (P,2). 
(Pt3) Identical to (P,3). 
(Pt4) In the limit 6 0 the three eigenvalues should be real and analytic in a 

neighbourhood of the phase-transition point. 
Concerning (Ptl)-(Pt3) we refer the readcr to the remarks made in section 2. By 

(Pt4) we restrict the discussion. to phase-transition points where three phase-transition 
lines meet (cf tigure 2). This situation is mostly shared by concrete examples. We are 
not sure whether the opposite case, that means one real and two complex conjugated 
eigenvalues in a neighbourhood of the phase-transition point (6 lo ) ,  can occur in 
dynamical systems. We refer the reader to appendix A where the details of this case 
are briefly outlined. 

Again we start our discussion hy analysing the situation at the bifurcation point 

to (Pt4) they can be viewed as hyperspheres in the q-u,apace which cross along the 
manifolds (cf figure 2) 

6 i 3, & ihe eigenvaiues nie real in o[ ihe phase-iransitioii point due 

r. := (q1u$“(6 I 0) = ual ) (6  I 0)  = I 0)) 
F(i,j)  := {q lu t ’ (6  0) = v$j(S 1 O ) }  ( ; / j )  = (0/’1),(1/’2),(0/2). (32) 

l?(i,j) represents the codimension one phase-transition manifold on which two eigen- 
values become degenerated. They mcet in the codimension two manifold r. of triply 
degenerated eigenvalues. As the result of this situation the q-space is divided into 
three parts (phases) corrcsponding to the difterent largest eigenvalue. The scaling re- 
lation connectcd with the manifolds ?,i,,) was treated in section 2. Let us therefore 
concentrate on r. and choose q, E I‘. arbitrary but fwed. U. := vq.(6 j 0)  denotes 
the critical eigenvalue. Then by (P, I) a polynomial of third-order can be extracted 
from the characteristic equation so tha t  ( 5 )  simplilies to 
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Figure 2. Diagrammatic view of the eigenvalues goveming a phase transition k e d  on a 

triple degeneracy ( 6  1 0) .  u p ' ,  U:', vg '  denote the three largest eigenvalues, ( v . , q . )  
lhe mdimension two phase-lnnsilion p i n t  and the cndimensian one phase-lransition 
maniiolas m uie tWO-dimenSiOn81 qapace ( M ~  = 2). 

Instead of this representation the elimination of the second-order term by introducing 

U 
1 + $ a ( b , q )  (34) - . -  2-  

L .- 
v. 

turns out to be useful. Then (33) results in 

zs + F ( 6 , q ) t  + G(6.q) = 0 

D / X  - \  - 1 . / I  ,.\ - $ < ; 2 ( 6 , < )  

G(6,q) = 4 6 , q )  - $ K b , q ) f z ( 6 , q )  + & a 3 ( 6 , q ) .  

(35) 

where 

' ' L ' , > c l J - " ~ u ? V l  

(36) 

Let us state a few general properties of the quantities (36). If one  considers the 
limit 6 1 0 and takes a q value on the wdimension two phase-transition manifold 
+ E r. then (35) admits a triply degenerated solution which means 

~ ( 6  i o,i) = o  ~ ( 6  I o,+)=o r,. (37) 

If one chooses especially 
that by (33) 

= q. this degenerated cigenvalue coincides with v. so 

<L(S ! 0 , q . j  = 0 h ( 6  0 : q . )  = 0 4 6  j 0 : q . )  = 0. (38) 

E F ( i , j )  the limit "king a q value on the neighbouring wdimension one manifolds 
6 1 0 yields a doubly degeneratcd solution of (35) so that 

D ( 6  10 , f j )  = 0 f j  E ?,,, j ,  (39) 
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where, as an important quantity for the subsequent calculations, the discriminant of 
(35) 

D ( 6 , q )  := ( fkY6,q))3 + ( $ C ( 6 , 4 ) ) 2  (40) 

has been introduced. Finally we stress that the largest solution of (33) is positive 
which means that (35) has either three real solutions or one real solution which is 
iarger than the reai part of the compiex conjugate ones. This constraint results in 

O(6,q)  < 0 three real solutions (41a) 

or 

D(6> q )  > 0 C(6, q )  < 0 one real solution (416) 

which can be seen, for example, by considering the explicit solutions of the cubic 
equation (cf (63) and (64)). 

Owing to (P,2) we are able to write down the following expansions of the coeffi- 
cients F and G 

F j k , q )  = p o ;  + p !  : A q  : +r-"'&' + F ? !  : A q :  s +  E-= : A g  : A q :  +o, 
G(6,q) = G"6 + G O 1  : A q :  +C2062 + G" : Aq : 6 + GO2 : Aq : Aq : fC3's3 

+G" : A q :  6'+ G " :  A p :  A q :  6 + G o 3 :  A q :  A q :  A q :  +O, 

(42) 

... Lam ,I.- ~ ~ . -  --Anr ,.-"+.:I.,,,;-" .mn:rLn.. , I . . -  f" /17\ 0.. "-"":A--"" -..o,.:", ""rn" 
W l l l l L  L l l L  liL,Y-"IucI c u l l l , , l , " L l " l l  ""III.,,,L.J UUC L" ,."I. "y C""J,UC""& "pLCB'l1 -.,La 

we put some constraints on the expansion coeficients. 

(i) 6 10. Then (42) reads 

F(6 1 O . q )  = F o l  : Aq : +FO' : Aq : Aq : +0( lAql3)  

G(6 1 0 , q )  = Go' : Aq : +GO' : Aq : Aq : +GO3 : A q  : Aq : A q  : +0(lAql4) .  

(43) 

By presupposition (P,4) (35) possesses three diffcrent solutions which can be ex- 
panded as zi = 2; : Aq : + .  . ., i = I ,  2 , 3 .  Inserting this expansion together with 
the expression (43) into (35) and requiring three different solutions for the expansion 
coefficients zt one gets 

FU1 = 0 ,  G~~ = o GO' = 0 .  (44) 

(ii) q = q.. Now (42) rcads 

F(6,q.)  = F1"6 + O ( P )  

C(6,q.) = Gi06+ G " ' & ' + 0 ( 6 : ' )  (45) 

and (40) yields 

D(6,q.)  = ($C;'")a6'+ { ( i F L o ) 9 +  $G"G'' 1 6 ' + 0 ( k 4 ) .  (46) 
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n e  relation GIo > 0 contradicts (41) as in this case from (45) and (46) G > 0, 
D > 0. Therefore 

GIo < 0 (47) 

holds. 
(iii) q, = 0. Because of (P,3) U* = 1 k valid we conclude from (6) and (33) that 

c(6 ,q  = 0) = 0 (4, = 0 ) .  (48) 

By (38) the expansions of a( 6, q )  and b( 6, q )  contain no contribution of order zero. 
Inspecting now the relations (36) (48) results in 

GIo = 0 ( 4 .  = 0). (49) 

Referring to the discussion following (19) we want to stress that the situation GIo = 0, 
q, # 0 is not generic. Nevertheless this case will also he treated in the sequel. Its 
meaning will become clear in the next section. Furthermore we have strong evidence 
that in the case q, = 0 the Thylor expansion of b( 6,q.) contains no contribution of 
first-order in 6. Even we a re  not able to show this relation in a strict sense we can 
give a heuristic explanation in appendix B. As an immediate consequence we obtain 
from (36) 

P o  = 0 c:?" = o ( 0 .  = 0). (50) 

But then the expansion (42) yields by taking (44) and (49) into account 

G(6,q)  = G" : Aq : 6 + 0, 

D ( 6 , q )  = (+GI1 : Aq : 6) + 0,. (51) 
2 

As D > 0 hut G has no definite sign the relation 

G" = 0 (q*  = 0 )  (52) 

follows from the  constraint (41). 
(iv) q = i E T,,6 1 0. If one chooses a q value on the codimension two 

phase-transition manifold (37) yields 

F(6 
C;( 6 

which means 

Fo2 : I : I := 0 GO3 : z : z : z := 0 if 1: is tangent to r,. (54) 

(v) 9 = @ E r( i , j j ,6  J 0. I f  the cl valuc is chosen on the codimension one  
phase-transition manifold we get from (3Y) 

( & F o 2 : $ - q ,  : < - q . : )  3 + ( ~ G " " ' : ~ - q , : ~ - q . : i - q .  : ) '+O(lG-q. l ' )=O 

(55) 
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so that 

( i F o 2  : z : x :) + ($GO3 : z : z : z :) = 0 

W Just and H Fujisaka 

(56) 
3 2 

if z is tangent to p(i/j). 
By (54) and (56) the melficients are related to the shape of the phase-transition 

manifolds. By straightfonvard algebra the different cases q, = 0 and q, # 0 can be 
discussed separately. 

Case A. q. = 0. With respect to (44), (49), (50) and (52) expansion (42) reads as 

F ( 6 , q )  = F2062 + F" : q : 6 + Fn2 : q : q : +03 

G(6,q) = G3063 + G2' : q : 62 + GI2 : q : q : 6 + GO3 : q : q : q : +O,. (57) 

Introducing the scaling abbreviations 

2 =: 6d1, q =: 6 s  (58) 

& +  F, (S ) l j j '  + GA(S) + O ( 6 )  = 0 

FA(%) := F2O + F" : z : +F02 : 5 : 5 : 

the eigenvalue equation (35) can be written as 

(59) 

where 

G,(z) := C:"' + G?' : T. : +GI2 : 1: : z : +GO3 : a: : z : z : . (60) 

The discriminant 

D A ( z )  = ( ' F  3 . 4  ( z ) ) ~  + (+GA(z)y  (61) 

determines whether (59) has entirely real or complex solutions. In the case D, < 0 
the three solutions are real which means that hy (4) the frequencies vanish. In the 
opposite case D ,  > 0 (61) allows for complex solutions that means non-vanishing 
frequencies. The explicit solutions can be easily written down in both cases by using 
the formula of Cardano. Rewriting these expressions for the old variables (cf (58) 
and (34)) one gets the scaling relation 

vq ( i )  - 1 = 6 H ( ' ) (  A q /  6 ) i = 0 , 1 , 2  (62) 

where 
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and 

D ,  (z = 2) < 0 : 6 
(01 

(1) 

H A  (5) := “ A ( = ) +  Y A ( Z ) C O S ( O ~ ( Z ) )  

HA (z) := aA(z)  + ?,(a) cos (aA(=) + 2 ~ )  
~j \2 ’ (z)  := aA(z)  + r A ( z )  cos (e(=) + 

It should be stressed that the contribution aA of the scaling functions comes from 
the expansion of the transformation (34). 

Case E. q, # U( GIo # 0). Using (44) one obtains for the expansion (42) 

F ( 6 , q )  = F”6 + FZ0S2 + F” : Aq : 6 + Fu2 : Aq : Aq : +O, 

G(6 ,q )=  G 1 u 6 + G 0 2 6 2 + G 1 1 : A q : 6 + G 3 0 6 5 + G 2 1  : A q : 6 ’  

+ G” : A q :  A q :  6 +  Go” A q :  A q :  A q :  +O,. (65) 

With the scaling abbreviations 

2 =: 61/3$L. A q  =: S 1 i 3 3  

the  eigenvalue equation (35) reads 

where 

FB(z) := Fo2 :a :a : 

G,(a) := GIo+ GO3 : a : a : 2 : . 
Again the zeros of the discriminant 

DB(a) := ($FB(a)y + (+GB(a))? (69) 

separate the different regions in (]-space where zero and non-vanishing frequencies 
occur. The scaling relations can  he ohtained from (67) as in case A and read 

where H C )  is given by (63) and (64) with q / 6 ,  D,, CA, nA,  h:, TA,  0, replaced 
by Aq/61J3. DB, GB, ag, h i ,  I ’ ~ ,  0,. Here n B  reads 

a,(x) = --!a”’ . a : .  ’ (71) 
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Case C. 9, # O(G" = 0). For later reference we also include this non-generic 
case in our discussion. The expansion (42) is given by (65) by omitting the term 
G'"6. Using the scaling abbreviations 

i = : Ad,, a q = : 6 . 9  (72) 

$: + & ( 8 ) d J ,  + G,(S) + o ( h )  = 0. 

+La n:n.,"..nl..a n"..^.:-" ,7<\ ..:nl,lr 
LLK.  W8LU"'U"b CyUuL'"" (Jd, J L C 1 Y 3  

(73) 

Here the definitions 

-. " ETc(.) := b"" + F =  : T : z : 

Gc(z)  := G" : z : +GO3 : 2 : z : a: : (74) 

have been used and the discriminant 

determines the values of the [requencies. The  scaling function in this case reads as 

where H g )  is again given by (63) and (64) with the obvious substitutions and 
U,(.) := uB(z) (cf (71)). 

It is clear that the scaling relations for the characteristic functions, the damping 
rates and the frequencies a n  be derived immediately from (3), (4), (62), (70) and 
(76). These scaling relations can be briefly summarized in the equations 

Here the value of t h e  exponent ( 1  = I ,  +, $ depends on the cases already discussed 
and the scaling functions 4, y(') and d') possess two different analytical branches 

results of this section and gives an overview of the scaling functions. Finally we want 
to note that (54) and (56) do not allow for a simple separation of tangent and normal 
variations with respect to the phase-transition manifold. This is different to the case 
of doubly degenerated eigenvalues where the separation is clearly reflected by (26) 
and (31). 

rbn-nrl;nn 9: the rinn of the discriminint D ( A ? ; / 5 " ) .  -.-r---"'a "'b'' Bb!e 2 scmmzr&s the 
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Table 1. Scaling relations in the case o f a  lriply degenerated eigenvalue and definition of 
the scaling functions ( X  = A ,  E, C). For the explicit expressions we refer l o  (633.1). 
(644,5), (60h (611, (68). (691, (71), (74) and (75). 

4. = 0 

D A  ( 4 6 )  > 0 

4. # O(G'O # 0) 

DB (Aq /6 l I3 )  > 0 

444 b $ i  (./a) 1s v I  + 61/34g !Aq/6*S3) In v I  + fi@ (Aq!fi) 

qr # O(GtO = 0) 

Dc ( A q / f i )  > 0 

$ )=  7'1 (?) 6 7 A > ( q / 6 )  6'1372 ( A q / 6 ' / 3 )  fi7Z ( A d & )  

- - - wq (2) 6 0 2  ( 4 6 )  6'I3GB> (Aq/6Il3)  6 0 :  (A./&) 

4. Examples 

As shown in the preceeding sections a typical scaling behaviour emerges near the 
degeneracy points of eigenvaiues. Those degeneracies typicaiiy occur in the vicinity 
of bifurcation points, especially when a crisis is involved in the bifurcation. In order 
to gain some more insight into the three different cases analysed in the preceeding 
section we want to discuss two simple examples. In general, model systems can be 
analysed numerically by evaluating the quantity (3). This approach does not require 
knowledge of the transfer operator and leads to the scaling relations. But it usually 

of thh aiiicie, 
Analysing the transfer operator greatly simplifies of the calculation. It is, however, 
difficult to derive an appropriate expression for the transfer operator of a specific 
model system. We refer the reader to the literature for the treatment of special 
examples 118, 191. In order to avoid this tedious procedure we will concentrate 
here on simple onedimensional Markov maps for which the transfer operator can be 
ena!ysr'd- I t  !erst appr~ximre!y withoct g r e  rffart Neverthe!ess ocr maGe!s hivc 
some general properties which can also be expected to be valid in more complicated 
systems. 

As a first example let us consider a one-dimensional expanding Markov map 
which has been derived as a crude approximation for the  Lorenz equationst 1171 (cf 
figure 3). Below the bifurcation point the system admits a chaotic invariant set which 
undergoes an interior crisis as the bifurcation point is reached. The transition matrix, 
that means the matrix representation of the Frobenius-Perron operator for this map 
is easily written down. In the vicinity of the bifurcation point this large matrix can he 

a large iiiimefie; eEGc aiic; theiefoie ;tyoad the 

t In eonIrast to the original Lorenz equalions lliis map has two unstable fixed points aulside the chaotic 
invariant set in order lo yield a chaotic allraclor on both sides of the bifurcation poini. 



3582 W JLN nnd H Fujisoka 

Flgure 3. Inversion symmetric Markov map after suffering an interior crisis (solid line). 
' h e  box indicates Ule domain of the farmer attractor and 6 denotes the bifurcation 
pmmeler .  Furthermore the functions U(=) (broken line) and U(.) (dotted line) used 
far evaluating the characteristic function arc shown. 

approximated by a transition matrix between the two unstable k e d  points and the 
chaotic repellor [ZO], an aproximation which also seems to he reasonable from the 
physical point of view 

1 - a  612 
n 1 - 6  
0 612 1 - a  ) 

Here oi denotes the escape rate from the unstable k e d  point and 6 <( 1 the transition 
rate from the chaotic repellor to one of the ruted points. The dependence of the latter 
on the bifurcation parameter of the mapping depends on its geometric properties but 

to a symmetry property of the matrix (78). In order to analyse the bifurcation using 
the quantity (3) a two valued function T L ( Z )  = (76(z) ,v(z))  seems to be appropriate 
where U denotes an even and v an odd function of its argument. The simplest choice 
is depicted in figure 3, where 11 and v take the values 1,0,1 respectively -l ,O, l  in 
the neighbourhood of the relevant repellors. Bking the transition matrix (78) into 

iinenr in a;ise of ?";arkov maps, uiveisjioii symmeiry of the has iead 

n r m . . n +  +ha m-+r:- ranraranror;nn  nf r h o  rronefpr nn~mtnr thrn reirlr ~c 
a c c y Y I I L  "11 . I I P L I M  .Cy1W1,1LY'.".l "L L S . 1  L. "..I..... "y1.Y.Y. ...-.a ._"YO - 

(79) 1 (1 - a)eP-q 6/Z 0 
aep-9 1 - 6 neP+9 (x;) = ( 0  

612 ( 1  - oi)ePt9 

~he.re. p ( p ,  q ) ,  h y ~ r t h  mcntianing that the expression (79) which w a g  derived 
for a very special model system depends only on the symmetry of the system and 
the type of the  bifurcation mentioned earlier. Although the dependence of oi and 
6 on the parameters of the system is based on the special features of the system 
in a complicated manner it is expected that our simple model shares many of the 
properties emerging in more complicated ones. At the bifurcation point 6 1 0 the 
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operator (79) possesses a triply degenerated eigenvalue U. at the phase-transition 
point (v.,q,) 

( 1  - a)eP*-q- = 1 = ( I  - a)eP*+q. = L,* (80) 

{ ( p , q ) l q  - % := Aq = 0 ,  P - P. := A P  > 01, l (v ,q )  l a p  = Aq < 0 )  and 
and two linearly independent eigenvectors. Furthermore three phase-transition lines 

{ ( p ,  q )  1 A p  = -Aq < 0) meet in this point. These phase-transition lines divide the 
qplane into three phases which are determined by the two unstable fixed points and 
the chaotic invariant set respectively. 7b investigate the scaling behaviour emerging 
for 6 > 0 we analyse the eigenvalue equation of the expression (79). The coefficienu 
of the characteristic equation (35) read in this case 

p ' ( 6 , q )  = --'a e - ' T - Y  
A _ . * " . .  , . n . . n .  ) b  - s ( ~ - Y - - Y  - e A ~ i A v ^  j: - $( ,Ap-Ae  - 1 + 6 j  ;-i 

- I_  . 

x (eA7'tA9 - I f 6 )  
G(6,p)  = $&{eAP+AY(eA7'-AP - 1 f 6 )  f e A P - A l ( e A P + A l  - 1 f 6)  

- ( e A P t A q  - e A P - 4 ' ) ? ) 6  + g ( e A P - A l  - 1 )  

) 6  - b{(eAp--"q - l)j - 6 j  + (eAp+Aq - 1 J ( e A p t A q  - 1 1-1 
(81) + L ( , A p - A s  + ,Al+Av - 2 - 6)s 

?i 

where 

B := a / (  I - a ) .  (82) 

Inspecting (81,) we recognize that G I "  = 0 holds so that case C of section 3 applies. 
The coefficients entering the scaling functions (74) read 

'F"6 = -&6 

1 - q . - . j . - - -  z\"l'J \ - Y J  

G" : Aq : 6 = $&Ap6 

P o z :  A -  . A -  ._ l ( A . . \ z - / A - \ ?  

Here the abbreviations s1 = s = AI>/&, s7 = 2 = Aq/& have been used. The 
discriminant (75) is, in this case, negative which can be checked by a straightfonuard 
computation. As a consequence only real eigenvalues that means vanishing frequen- 
cies occur in the vicinity of the phasc-transition point and the scaling functions are  
given by the second part of the third column in tahle 2. 
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As shown in the previous example the symmetry of the system has lead to the 
Occurrence of the non-generic case C. In Order to discuss the more general case we 
have to refer back to models which do not share this property. As we are only 
interested in the principal aspect of this case we will directly investigate a simple 
matrix representation of the transfer operator although we can also find simple one- 
dimensional and probably higher dimensional maps from which it can be derived. Let 
us consider a system which admits one attracting and two repelling sets which decay 
towards the former one. As a bifurcation parameter is changed a crisis should occur 
where a transition from the attracting set to one of the repellors should be possible. 
Then the transition matrix reads as 

where 6 < 1 denotes the bifurcation parameter and a;, the decay rates of the 
repelling sets. If  we again consider the observable u ( z )  = ( u ( z ) , v ( z ) )  taking 
constant values 1 ,0 ,  1 and - 1 , O ,  I respectively on the attracting and the repelling 
sets then the transfer operator admits the simple matrix representation 

a31eP+9 

(1 - a31 - a32)ep+q 
) ' (86) 

( I  - 6)eP-q a 2 1  

0 

Due to the introduction of two fluctuating quantities we are able to detect the two 
level internal structure of the repeller. At the bifurcation point 6 10 the operator 
(%) yieids a tripiy degenerated eigenvaiue U, at the phase-transition point ( p , ,  q, j 

1 - 0 2 1  a:,2e11+9 

( O  6eP-q 
(E:) = 

(87) 1,.+q. = 1 - n2,  = ( 1  - a31 - n 3 2 ) e  U. 
= 

where the three phase-transition lines { ( p , q )  lap = Ay < 0), { ( p , q )  I A p  = 
-Aq < 0) and { ( p , y ) / A q  = 0 , A p  2 0)  meet. Furthermore one easily recog- 
nizes that the operator admits only one eigenvector which is the generic case. In the 
case 6 > 0 the characteristic equation of the matrix (S6) can be obtained after an 
elementary but exhausting computation. Rewriting it in the form (35) we get for the 
coefficients 

1) F ( 6 , q )  = -&,,e'A1'6 - 3 { (  I - 6)eA>' -Aq - eAlz+Aq]2 - ${(I - 6 ) e A P - A q  - 

11 x {eA7'+AY - 
G(6,g) = -&,,a3,e2"'6 - && .3 31 { ( I  - 6)eA71-Aq + e A P + A 9  - 2 I ezA7'6 

- L{( 1 - 6 j e A I ' - A 9  - 1)" - &{eAv+Aq - 
+ +(( 1 - 6)eAl'-Av + pAr'+Aq - ? I { (  1 - , 5 ) e A P - A 9  - l){eAP+Aq - 1 )  

1 j3 27 l i  

(88) 

where the abbreviations 
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Figure 4. Diagrammatic viw of the region in q-space conlaining finile kequencies in 
the case 6 > 0. 'lbe full CUNS denote tile phase-Innsition lines (6 I 0) and the troken 
C U N ~ S  Ihe lines of doubly dcgenenled eigenvalues (6 IO) which mn be obtained from 
(39), ((18) (69) and (90). 

have been used. Clearly GIa # 0 holds so that case B applies. The coefficients 
contributing to the scaling functions (68) can be immediately derived. One  gets 

Fo?: A q :  Aq := - i ( A p ) ? - ( ~ l q ) ~  

G"6 = -&21&3?6 

and the explicit expressions for the scaling functions read as 

G s ( s , 1 ) = - E L Z l i \ j ? + ~ s ( ~ - 1 2 ) .  (91) 

Here the abbreviations s1 = .s = A T ) / ~ I / ~ ,  .s2 = 1 = Aq/6'/3 have been introduced. 
The discriminant (69) is written as 

Setting this expression equal to zero determines the border line between vanishing 
and non-vanishing frequencies. It is sketched in figure 4. In the vicinity of the 
phase-transition point frequcncies of order O (  occur. Furthermore one  recog- 
nizes the remarkahle fact that far away from the phase-transition point non-vanishing 
frequencies also emerge in regions of doubly degenerated eigenvalues. This is highly 
plausible as doubly degenerated real eigenvalues might become complex valued by a 
small perturbation. On the phase-transition lines, however, this effect is suppressed 
as the largest eigenvalue has to be a real quantity. 
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As shown by these examples the three cases A, B, C mentioned in section 3 reflect 
the number of eigenvectors that the transfer operator admits at the bifurcation p in t .  
Therefore the scaling behaviour allows for an investigation of the spectral properties 
even if an explicit representation Cor the transfer operator is not known. 

5. Conclusion 

In this article we have extended a previously developed idea [ l l ]  to derive scaling 
relations in the vicinity of q-phase transition points from a rather general point of 
view. The generality of our approach is based on avoiding any reference to special 
dynamical systems hut starting directly from the characteristic equation of the transfer 
operator which determines the eigenvalues of interest. Using a few general properties 
of this equation we have shown that the relevant thermodynamical quantities obey 
in general a scaling relation of the form 6 " H ( ( q  - q , ) / P ) .  Furthermore we have 
been able to derive explicit expressions for the scaling functions in a mean-field- 
like way. Besides this the analytical expression for the scaling function depends 
oniy on tne number of eigenvaiues which become degenerated at the bifurcation 
p i n t  and cause the phase transition. The surprising observation that these scaling 
functions have turned out to he rather independent of the special dynamical system 
[21] is explained by our results in a clear way. But we note that our approach 
cannot link the concrete bifurcation parameter of a dynamical system (e.g. an inverse- 
transition time) to our scaling parameter 6 in general. We suppose that such a 
relation depends on special properties of t h e  dynamical system under consideration 
[4]. As we have allowed for the treatment of the multivariable case in our framework 
higher-order degeneracies of eigenvalues can also be achieved in a generic way. 
?he associated phase transitions clearly display the different local structures of the 
invariant set involved. The treatment of the scaling behaviour in their vicinity has 
shown that finite frequencies might emerge which mirror the degeneracy of low-lying 
C,~"."',,"C& I ",'X,,J nr w a l l &  L" . ) L I C I I Y  L l l Y L  U". apy"""c" Y &",...,U. C . B " Y 6 . 1  L" u.p".' 

quite different situations which can he described by a transfer operator. Considering, 
for example, stochastic nonlinear systems it is clear that our approach yields a noise 
induced scaling behaviour in the vicinity of the phase-transition point even if the 
precise dependence of the scaling parameter 6 on the noise strength is unknown n 
priori. We conclude that phase transitions involving a finite number of eigenvalues 

hyperbolic situations, where a continuous part of the spectrum is involved in the 
phase-transition [Y, lo], demands for further investigations. 

a:nnn.ml..nr C:nnll.. ..,a ..,nnt *n e+rarrj r h q r  n 7 . i  qnnmorh ;c m a n a r . 1  onns*nh tn mntiiro 

"..- n r ~  rintnnrnrl hxr -, nnsr .,". tro~+menf .. a cflified \,=y, Neyenhe!ess pprtgifl I.ifl& of 
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Appendix A 

Instead of (Pt4) let us assume that the characteristic equation (5) admits one real and 
two complex conjugated solutions in the vicinity of the phase-transition point (6 IO). 
As we are only interested in the principal aspect of this case we want to restrict the 
discussion to two variables ( M  = 2 )  and denote the corresponding parameters by 

we concentrate on the case 6 1 0 and on the discussion of the phase-transition linest. 
The main features are displayed in figure 5 and we show in the sequel that they occur 
generically. 

By the presupposition made above, (5) simplifies in the vicinity of the phase- 
transition point ( p . , q . )  to 

= (p i  q )  to avoid gnnecessq ifid.d_ices. Fer reasap2 that ~.!! fi.n.a!!y kcome clear 

+c(n7J,aq)) = 0 (93) 

U* = G * ( 1  =+ “ ( A p , a q ) )  yie!ds the rea! eigenM!ue an:! the c=e!Ej,cien:s. A, B , C  
if the three largest eigenvalues are considered. Here A p  := p - p * ,  Ay := y - y., 

are analytical functions of their arguments. The zero-order term in their expansions 
vanishes due to (Ptl). Additionally the first-order contribution to C(Ap ,  AQ) does 
not vanish as (93) should yield a complex solution in the neighbourhood of the 
phase-transition p in t .  Elimination of the quadratic term in VJU, - 1 by a linear 
transformation results in (35) where 

F(  A p, Aq)  = C,‘ - A B  - $( B - A)2 

G ( A p , A q )  = - C A  - i ( C -  A B ) ( B -  A ) +  $ ( E  - A ) 3 .  (94) 

The arguments of A ,  B and C have been suppressed to simplify the notation. In 
contrast to (44) the expansions of F and G contain contributions of the order 0, 
and Oz.  By (94) both quantities are related via 

G(Ap ,Ay)  = - & F ( A p , A q )  {2A + B }  - ${2A + (95) 

We are interested in the phase-transition lines which are determined by a degener- 
ated eigenvalue. Referring back to (39) these lines are given by the zeros of the 
discriminant. Using (95) this condition reads 
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These expressions are a trivial consequence of (93). The shape of these lines can easily 
be obtained using the 'hylor expansions of F ,  A, E. They are qualitatively displayed 
in figure 5 .  Inspecting (96) one recognizes that the sign of D does not change if 
one crosses f ,  (D Q 0) whereas it changes by crossing f2. Referring back to (41) 
this means that on f, two real eigenvalues become degenerate whereas on f ,  a pair 
of complex conjugated eigenvalues is born. Due to the requirement that the largest 
eigenva!ue B E! the !act-mentio!!ed tr~~sitio!! takes p!~ce between the !owe: !yisg 
eigenvalues. Figure 5 summarizes our outcomes. 

W JUSI and H Fujisaka 

Pl&!urc 5. Diagrammatic view of the phase-transition line (thick line) and the line of 
degeneracy between the lower lying eigenvalues (thin line). In  the hatched region the 
system possesses complex eigenvalues. 

It is rather unlikely that the strange looking phase diagram (figure 5) occurs 
in dynamical systems. On the one hand this kind of phase diagram has not been 
observed in any dynamical system. On the other hand we have some evidence but no 
proof at hand that this kind of phase transition is impossible. 

Appendix B 

Our considerations will mainly be based on the Markov property of the operator (2) 

J [ (X ;= ,h) (z )dz  = J f h ( z ) d z  (98) 

which has not yet been used. Suppose that the transfer operator admits some probably 
infinite dimensional matrix representation at q = q. = 0. It possesses by presup- 
position three eigenvalucs which are well separated from the remaining part of the 
spectrum. For this reason the matrix representation can be cast into the block form 

where H denotes a 3 x 3 matrix which determines the properties of the characteristic 
equation (33). Concentrating for a moment on the limit 6 1 0 H possesses the 
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triply degenerated eigenvalue v, = 1. Furthermore from (98) and the structure (99) 
we conclude that the sum of column elements of H equals 1. Both requiremenu 
determine H uniquely as the identity matrix. Investigating now the case 6 > 0 we 
remark that the off-diagonal matrix elements have to be of the order O(6). Otherwise 
the  presupposition (P,2) is violated. By this reasoning H takes the form 

where 6,, = O ( 6 ) .  The characteristic equation (33) at q = 0 is determined by 

(IO!) 
- 1 + 612 + 613 -621 -631 

vq - 1 -I- 5,, 4- 5,, 
-623 

From this equation it is obvious that b ( 6 , q  = 0) contains no  contribution of first- 
order, that means b" = 0. 

Appendix C 

As mentioned in the introduction the characteristic function +(q)  is strongly 
related to the fluctuations of the temporal coarse grained quantity U, , ( z )  = 
C::iu(T'(z))/n. We want to make this statement explicit in this appendix. 

Let us introduce the distribution function of the  fluctuating quantity U, 

p , ' (a )  := ( 6 ( a - U , : ( z ) ) )  - e - l L m ( 0 )  (102) 

where a = ( a l , .  . . , a M )  and the asymptotic behaviour stated on the right-hand 
side defines the fluctuation spcctrum r r ( a )  [12, 221. In the long time limit U,, 
approaches its ensemble average ( U )  and p a  tends towards the 6distribution as 
a(a )  > .((U)) = 0. Clearly .(a) explicitly contains the large fluctuations of U,,. 
inserting (imj into the definition (5j we obtain 

Using the asymptotic behaviour and evaluating the right-hand side with the saddle 
point method we end up with the relation [12, 271 

This Legendre-Fenchel transform can he inverted casily leading to 

Assuming the smoothness of d~ and rr the relations (104) and (105) can be cast into 
a form more suitable for explicit evalui~tions. Defining the functions 6 ( q )  and q ( a )  
via the relations 



discovered in sections 2 and 3 carries over to a scaling behaviour for the fluctuation 
spectrum. From (106) and (108) we get 

so that (107) yields the scaling relation 

cr(a) = aq. - I n  U. + h " { a ~ ( a )  - &(e(a))} .  (110) 

Conceming the explicit expressions of 6 and a we refer the reader to tables 1 and 2. 
Instead of performing the  Legendre-Fenchel transform in (104) and (105) with 

a!! .<afia'.!es ax:! ii & nnrr:l.ln fn :"t.,,A..m n..n"r:t:nr ... L a m  +he 

transformation is applied only to some of the arguments. The meaning of these 
quantities can be guessed from the considerations already made. Let us split the 
observables U and the parameters q into two groups 71 = ( ~ L ( ~ ) , u ( ~ ) )  and q = 
( q ( 1 ) , q ( 2 ) ) .  Having the definition (3)  in mind one of the authors introduced a 
characteristic function with respect to the mriahles U ( ' )  under the constraint that the 

y"""""' I" l l l l l " U Y C l  'I""'L'LL.0 null- L l l l  

Miia';!es t,?' paed .Ja!i;es &' [I?] 

(111) 
1 A ( g ( ' ) , ~ x ( ~ ) )  := lini - I l n ( e x 1 ( ( 7 2 ( ' ) ( / ~ ~ ) ( 2 ) ) 6 ( ~ ( ~ )  - U : ) ( Z ) ) ) .  

Here the obvious abbreviation U:?)(z)  := C : ' z ' ~ ( ~ ] ( T ~ ( z ) ) / n ,  k = 1 , 2  has been 
used. The function A ( q ( ' ) , d 2 ' )  thus describes the cross correlation between the 
local averages U,:'' and U,?'. Now we proceed along the lines presented above. 
Using (102), ( 1 1 1 )  reduces to 

7,-CO 71 

A(q(') ,<x(*I) = n-N l i i n  - 7, 111 c.'lq'llm'll I ) , ,  ( a(2))da(1) ('12) ' S  
where, k t h  respect to the previously mentioned separation, the notation a = 
( ~ x ( l ) , a ( ~ ) )  has been introduced. The asymptotic behaviour of p , ,  and the saddle 
point method allow for an  evaluation of the integral with the result 

~ ( q ( ' ) , a ( ~ ) )  = - r i i i i ~ { ~ ( : ~ ( ' ) , ~ ~ ' ' ) )  - q ( i ) d ' ) ) .  (113) 
2 1 1 )  

Assuming the smoothness of the functions involvcd this equation can be further 
simpiified, iniroducing the f"nciiuns iE"" , I ,  

,1l\ .~~.,  -171, i l l  ~ 17l, .<. \ . , ( q l ' > , < x \ - , )  anu q ~ - , ( q ~ - , , < x ~ - , )  "la 
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we obtain 

where the function g(') is according to (114) defined by 
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